Pregunta
upstudy study bank question image url

Sketch the graph of the rational function by hand. As sketching aids, check for intercepts, vertical asymptotes, horizontal asymptotes, and holes. Show complete work on your worksheet! \( f(x)=\frac{x^{2}-9}{x^{2}-x-12} \) Reduced function: \( f_{\text {red }}(x)=\frac{x-3}{x-4} \) Domain: x= VA: There is/are vertical asymptote(s) at Hole(s): There are no vertical asymptotes. O There is a hole at OThere is no hole in this function. O-intercept(s): OThere is/are \( x \)-intercept(s) at There are no \( x \)-intercepts.

Ask by Reed Brooks. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of \( f(x) = \frac{x^{2} - 9}{x^{2} - x - 12} \): 1. **Factor and Simplify:** - Numerator: \( x^{2} - 9 = (x - 3)(x + 3) \) - Denominator: \( x^{2} - x - 12 = (x - 4)(x + 3) \) - Simplified function: \( f_{\text{red}}(x) = \frac{x - 3}{x - 4} \) with a hole at \( x = -3 \) 2. **Domain:** \( x \neq 4 \) and \( x \neq -3 \) 3. **Intercepts:** - X-intercept: \( (3, 0) \) - Y-intercept: \( \left(0, \frac{3}{4}\right) \) 4. **Asymptotes:** - Vertical Asymptote: \( x = 4 \) - Horizontal Asymptote: \( y = 1 \) 5. **Hole:** At \( x = -3 \) 6. **Sketch the Graph:** - Plot the intercepts and asymptotes. - Draw the vertical asymptote at \( x = 4 \) and the horizontal asymptote at \( y = 1 \). - Mark a hole at \( x = -3 \). - Plot additional points to complete the graph. By following these steps, you can accurately sketch the graph of the rational function by hand.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To sketch the graph of the rational function \( f(x) = \frac{x^2 - 9}{x^2 - x - 12} \), let's analyze the components step by step. 1. **Factor the Function:** - The numerator \( x^2 - 9 \) factors as \( (x - 3)(x + 3) \). - The denominator \( x^2 - x - 12 \) factors as \( (x - 4)(x + 3) \). Thus, we rewrite the function as: \[ f(x) = \frac{(x - 3)(x + 3)}{(x - 4)(x + 3)} \] 2. **Reduce the Function:** - We can simplify the function since \( (x + 3) \) is in both the numerator and the denominator: \[ f_{\text{red}}(x) = \frac{x - 3}{x - 4} \] 3. **Domain:** - The domain excludes values that make the denominator zero. The denominator \( (x - 4)(x + 3) \) is zero at \( x = 4 \) and \( x = -3 \). Therefore, the domain is: \[ x \in (-\infty, -3) \cup (-3, 4) \cup (4, \infty) \] 4. **Vertical Asymptotes (VA):** - Since the original function has a factor \( (x + 3) \) in both the numerator and the denominator that cancels, there are no vertical asymptotes at that point. The vertical asymptote occurs where the remaining denominator equals zero: \[ \text{There is a vertical asymptote at } x = 4. \] 5. **Holes:** - A hole exists where we canceled out a factor: \[ \text{There is a hole at } x = -3. \] 6. **O-Intercept(s):** - To find the x-intercepts, set the numerator of the reduced function equal to zero: \[ x - 3 = 0 \Rightarrow x = 3. \] \[ \text{There is an } x\text{-intercept at } x = 3. \] 7. **Horizontal Asymptote:** - The degrees of the numerator and denominator are the same (both are degree 1 after simplification). The horizontal asymptote is determined by the ratio of the leading coefficients: \[ y = \frac{1}{1} = 1. \] **Summary of Features:** - Domain: \( x \in (-\infty, -3) \cup (-3, 4) \cup (4, \infty) \) - Vertical Asymptote at \( x = 4 \) - Hole at \( x = -3 \) - x-intercept at \( x = 3 \) - Horizontal Asymptote at \( y = 1 \) ### Final Thoughts With all these features identified, you can plot the graph accordingly by marking the intercept, asymptotes, and holes. Enjoy sketching!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad