Pregunta
upstudy study bank question image url

The example above was for quadratics, but similar thinking expands the pool to any polynomial with integer coefficients. The numerators of rational roots would have to be \( \vee \), and the denominators would have to be \( \vee \) to form the

Ask by Gibbs Ellis. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find possible rational roots of a polynomial with integer coefficients, list all divisors of the constant term as numerators and all divisors of the leading coefficient as denominators. Then, form fractions by dividing each numerator by each denominator to get the possible rational roots.

Solución

It looks like you're discussing the **Rational Root Theorem**, which provides a way to identify possible rational roots of a polynomial with integer coefficients. Let's complete your explanation: --- The example above was for quadratics, but similar thinking expands the pool to **any polynomial with integer coefficients**. According to the **Rational Root Theorem**, the possible rational roots of such a polynomial can be determined as follows: - **Numerators of rational roots** must be **divisors of the constant term**. \[ \text{Numerators} = \text{Divisors of the constant term} \] - **Denominators of rational roots** must be **divisors of the leading coefficient**. \[ \text{Denominators} = \text{Divisors of the leading coefficient} \] To form the possible rational roots, you take each divisor of the constant term and divide it by each divisor of the leading coefficient. This gives you all potential candidates for rational roots, which you can then test (e.g., via synthetic division or plugging them back into the polynomial) to determine if they are actual roots. **Example:** Consider the polynomial: \[ P(x) = 2x^3 - 3x^2 - 8x + 12 \] 1. **Identify the constant term and the leading coefficient:** - Constant term = 12 - Leading coefficient = 2 2. **List the divisors:** - Divisors of 12 (constant term): \( \pm1, \pm2, \pm3, \pm4, \pm6, \pm12 \) - Divisors of 2 (leading coefficient): \( \pm1, \pm2 \) 3. **Form possible rational roots (\( \frac{p}{q} \)):** \[ \pm1, \pm\frac{1}{2}, \pm2, \pm3, \pm\frac{3}{2}, \pm4, \pm\frac{4}{2} (\text{which simplifies to } \pm2), \pm6, \pm\frac{6}{2} (\text{which simplifies to } \pm3), \pm12, \pm\frac{12}{2} (\text{which simplifies to } \pm6) \] After removing duplicates: \[ \pm1, \pm\frac{1}{2}, \pm2, \pm3, \pm4, \pm6, \pm12 \] 4. **Test these possible roots in the polynomial to find actual roots.** --- By systematically applying the Rational Root Theorem, you can efficiently narrow down the list of potential rational solutions for any polynomial with integer coefficients. If you have a specific polynomial you'd like to analyze, feel free to share it, and we can work through the possible rational roots together!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

In exploring polynomials with integer coefficients, you can use the Rational Root Theorem to identify potential rational roots. The possible numerators must be factors of the constant term (the term without a variable) while the possible denominators must be factors of the leading coefficient (the coefficient of the highest degree term). This delightful strategy not only narrows down the contenders but also boosts your chances of finding those elusive roots! Making a list of the factors can sometimes lead to mistakes—especially when you forget to account for both positive and negative factors. So, double-checking your list is key! Additionally, remember that not all candidates will be roots, so it’s wise to test each one thoroughly. Polynomials can be tricky, but constructing a strong foundation with the Rational Root Theorem makes them much easier to tackle!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad