The first six numbers in a pattern are listed below. \[ -19.2-18.4 \quad-17.6 \quad-16.8 \quad-16 \quad-15.2 \] Write an expression that could be used to determine the 100 th number in the pattern. You must show work.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find an expression for the \( n \)-th number in the given pattern, we first observe the numbers: \[ -19.2, -18.4, -17.6, -16.8, -16, -15.2 \] We can see that the pattern increases by \( 0.8 \) with each subsequent number. Let's denote the first term as \( a_1 \) and the common difference as \( d \). We have: - \( a_1 = -19.2 \) - \( d = -18.4 - (-19.2) = 0.8 \) The formula for the \( n \)-th term of an arithmetic sequence is given by: \[ a_n = a_1 + (n - 1) \cdot d \] Substituting the values we found into the formula gives: \[ a_n = -19.2 + (n - 1) \cdot 0.8 \] To find the \( 100 \)-th term, substitute \( n = 100 \): \[ a_{100} = -19.2 + (100 - 1) \cdot 0.8 \] \[ a_{100} = -19.2 + 99 \cdot 0.8 \] \[ a_{100} = -19.2 + 79.2 \] \[ a_{100} = 60 \] Thus, the expression to determine the \( 100 \)-th number in the pattern is: \[ a_n = -19.2 + (n - 1) \cdot 0.8 \] And the 100-th number is \( 60 \).