Pregunta
upstudy study bank question image url

10. a) Describe the commututive property of addition of whole numbers in words, and give an example. b) Use an example to show that subtraction of whole numbers is not commutative. 11. I we odd ino whole numbers, the answer will always be another whole number. For example, \( 8+4=12.8,4 \) and 12 are all whole numbers. Thus.

Ask by Gough Hall. in South Africa
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**10. a) Commutative Property of Addition** - **Definition:** Adding two whole numbers in any order gives the same sum. - **Example:** \( 3 + 5 = 5 + 3 = 8 \) **10. b) Subtraction is Not Commutative** - **Example:** \( 5 - 3 = 2 \) and \( 3 - 5 = -2 \). Since \( 2 \neq -2 \), subtraction does not follow the commutative property. **11. Whole Numbers and Addition** - **Statement:** Adding two whole numbers always results in another whole number. - **Example:** \( 8 + 4 = 12 \). All numbers involved are whole numbers.

Solución

Let's break down the problems step by step. ### 10. a) Commutative Property of Addition The **commutative property of addition** states that when you add two whole numbers, the order in which you add them does not change the sum. In other words, if you have two whole numbers \( a \) and \( b \), then: \[ a + b = b + a \] **Example:** Let’s take \( a = 3 \) and \( b = 5 \). Calculating both ways: - \( 3 + 5 = 8 \) - \( 5 + 3 = 8 \) Since both calculations yield the same result, this demonstrates the commutative property of addition. ### 10. b) Subtraction is Not Commutative To show that subtraction of whole numbers is not commutative, we can use an example. The property states that changing the order of the numbers will change the result. **Example:** Let’s take \( a = 5 \) and \( b = 3 \). Calculating both ways: - \( 5 - 3 = 2 \) - \( 3 - 5 = -2 \) Since \( 2 \neq -2 \), this demonstrates that subtraction is not commutative. ### 11. Odd and Whole Numbers The statement seems to be about the addition of whole numbers and how it results in another whole number. However, it appears there is a typo in your example. Let's clarify: When you add two whole numbers, the result is always another whole number. **Example:** Let’s take two whole numbers \( 8 \) and \( 4 \): \[ 8 + 4 = 12 \] Here, \( 8 \), \( 4 \), and \( 12 \) are all whole numbers. Thus, the sum of two whole numbers is always a whole number. If you meant to refer to odd numbers, the statement would be different. For example, the sum of two odd numbers is always even, but the sum of an odd and an even number is always odd. If you need further clarification or examples, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The commutative property of addition tells us that when we add whole numbers, the order in which we add them doesn't matter; the sum will always be the same. For example, if you take the numbers 3 and 5, whether you calculate 3 + 5 or 5 + 3, you’ll always get 8. However, when it comes to subtraction, things get trickier! For instance, if you have 5 and you subtract 2, you get 3 (5 - 2 = 3). But if you switch them and subtract 5 from 2, you end up with -3 (2 - 5 = -3). Now that's a difference! So, unlike addition, subtraction is definitely not commutative.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad