Pregunta
b) \( \sqrt[\sqrt{5}+\sqrt{2}+\left(\sqrt{2}\right)^{2}]{\sqrt{2}} \)
Ask by Cummings Barnett. in South Africa
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression simplifies to approximately 1.0632.
Solución
To evaluate the expression:
\[
\sqrt[\sqrt{5} + \sqrt{2} + \left(\sqrt{2}\right)^2]{\sqrt{2}}
\]
let's break it down step by step.
### Step 1: Simplify the Denominator
First, simplify the exponent denominator:
\[
\sqrt{5} + \sqrt{2} + \left(\sqrt{2}\right)^2
\]
Since \(\left(\sqrt{2}\right)^2 = 2\), the denominator becomes:
\[
\sqrt{5} + \sqrt{2} + 2
\]
### Step 2: Rewrite the Expression Using Exponents
The original expression can be rewritten using exponent notation:
\[
\sqrt{2}^{\frac{1}{\sqrt{5} + \sqrt{2} + 2}}
\]
Recall that \(\sqrt{2} = 2^{1/2}\), so:
\[
2^{\frac{1}{2(\sqrt{5} + \sqrt{2} + 2)}}
\]
### Step 3: Approximate the Numerical Value
To find a numerical approximation:
1. **Calculate the Denominator:**
\[
\sqrt{5} \approx 2.23607,\quad \sqrt{2} \approx 1.41421
\]
\[
\sqrt{5} + \sqrt{2} + 2 \approx 2.23607 + 1.41421 + 2 = 5.65028
\]
2. **Compute the Exponent:**
\[
\frac{1}{2 \times 5.65028} = \frac{1}{11.30056} \approx 0.0885
\]
3. **Evaluate \(2^{0.0885}\):**
\[
2^{0.0885} \approx 1.0632
\]
### Final Answer
The expression simplifies to approximately **1.0632**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify the expression \( \sqrt[\sqrt{5}+\sqrt{2}+\left(\sqrt{2}\right)^{2}]{\sqrt{2}} \), we first note that \( \left(\sqrt{2}\right)^{2} = 2 \). This means our expression becomes: \[ \sqrt[\sqrt{5} + \sqrt{2} + 2]{\sqrt{2}} \] Next, we can set \( a = \sqrt{5} + \sqrt{2} + 2 \). Thus, we have: \[ \sqrt[a]{\sqrt{2}} = (\sqrt{2})^{\frac{1}{a}} = 2^{\frac{1}{2a}} \] Now we substitute \( a \): \[ a = \sqrt{5} + \sqrt{2} + 2 \] Therefore, we have: \[ 2^{\frac{1}{2(\sqrt{5} + \sqrt{2} + 2)}} \] This is the simplified form of the original expression.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium