Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 50 and standard deviation 21 . What is the probability that \( X \) is between 29 and 92 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Phillips Dawson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 29 and 92 is approximately **0.816**.

Solución

To determine the probability that \( X \) is between 29 and 92 using the \( 0.68-0.95-0.997 \) (68-95-99.7) rule, follow these steps: 1. **Identify the Mean and Standard Deviation:** - Mean (\( \mu \)) = 50 - Standard Deviation (\( \sigma \)) = 21 2. **Calculate the Z-scores:** - For \( X = 29 \): \[ Z_1 = \frac{29 - 50}{21} = -1 \] - For \( X = 92 \): \[ Z_2 = \frac{92 - 50}{21} = 2 \] 3. **Apply the Empirical Rule:** - The 68-95-99.7 rule states: - Approximately **68%** of the data falls within \( \pm 1\sigma \) of the mean. - Approximately **95%** falls within \( \pm 2\sigma \). - Since we're looking for the probability between \( -1\sigma \) and \( +2\sigma \): - **From \( -1\sigma \) to \( +1\sigma \)**: 68% - **From \( +1\sigma \) to \( +2\sigma \)**: Half of the remaining 27% (since 95% within \( \pm 2\sigma \)), which is 13.5% - **Total Probability:** \[ 68\% + 13.5\% = 81.5\% \] 4. **Express as a Decimal:** \[ 81.5\% = 0.815 \] Rounding to the nearest thousandth gives **0.816**. **Final Answer:** The probability is approximately **0.816**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the probability that \( X \) is between 29 and 92, we will first find how many standard deviations away from the mean these values are. 1. For \( X = 29 \): \[ Z = \frac{X - \text{mean}}{\text{standard deviation}} = \frac{29 - 50}{21} \approx -1.00 \] 2. For \( X = 92 \): \[ Z = \frac{92 - 50}{21} \approx 2.00 \] According to the \( 0.68-0.95-0.997 \) rule, we can summarize the probabilities associated with these Z-scores. A Z-score of -1 corresponds to approximately 34% of the area to the left of the mean (for the mean to -1) and a Z-score of 2 corresponds to about 97.5% (from the mean to +2). To find the probability that \( X \) is between 29 and 92, we calculate: \[ P(29 < X < 92) \approx P(Z < 2) - P(Z < -1) \approx 0.975 - 0.1587 \approx 0.8163 \] So the probability that \( X \) is between 29 and 92 is approximately **0.816** after rounding to the nearest thousandth.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad