Work out the value of each expression when \( w=3, x=2, y=-4 \) and \( z=-2 \). \( \begin{array}{lll}\text { a } 3(w+x) & \text { b } x(2 w-y) & \text { c } \\ \text { d } w-z^{3} & \text { e } x^{2}+z^{2} & \text { f } \\ \text { d } w-y) \\ \text { g } \frac{x}{2}-\frac{y}{4} & \text { h } \frac{w x}{z}+y & (2 z)^{3} \\ \text { j } 20-2 w^{2} & \mathrm{k} & w+z(3 x-2 y)\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Let's evaluate each expression step-by-step using the given values \( w=3, x=2, y=-4, z=-2 \). **a)** \( 3(w+x) \) \( 3(3+2) = 3 \times 5 = 15 \) **b)** \( x(2w-y) \) \( 2(2(3)-(-4)) = 2(6 + 4) = 2 \times 10 = 20 \) **c)** Not provided in the original query. **d)** \( w-z^{3} \) \( 3 - (-2)^{3} = 3 - (-8) = 3 + 8 = 11 \) **e)** \( x^{2}+z^{2} \) \( 2^{2} + (-2)^{2} = 4 + 4 = 8 \) **f)** \( w-y \) \( 3 - (-4) = 3 + 4 = 7 \) **g)** \( \frac{x}{2}-\frac{y}{4} \) \( \frac{2}{2} - \frac{-4}{4} = 1 + 1 = 2 \) **h)** \( \frac{wx}{z}+y \) \( \frac{3 \times 2}{-2} - 4 = \frac{6}{-2} - 4 = -3 - 4 = -7 \) **i)** \( (2z)^{3} \) \( (2 \times -2)^{3} = (-4)^{3} = -64 \) **j)** \( 20-2w^{2} \) \( 20 - 2(3^{2}) = 20 - 2(9) = 20 - 18 = 2 \) **k)** Not provided in the original query. **l)** \( w+z(3x-2y) \) \( 3 + (-2)(3 \times 2 - 2 \times -4) = 3 + (-2)(6 + 8) = 3 - 2 \times 14 = 3 - 28 = -25 \) Here are the final evaluated expressions: - a) 15 - b) 20 - d) 11 - e) 8 - f) 7 - g) 2 - h) -7 - i) -64 - j) 2 - l) -25