Pregunta
upstudy study bank question image url

2 The side length of a square tile is 200 mm and the side length of a square floor is \( 2,4 \mathrm{~m} \). a Express the side lengths as a ratio. b Express the area of the floor and the area of one tile as a ratio. c How many tiles are required to cover the floor?

Ask by Marshall Hampton. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a. Side length ratio:** 1 : 12 **b. Area ratio:** 144 : 1 **c. Number of tiles needed:** 144

Solución

Let's solve the problem step by step. **Given:** - Side length of one square tile = 200 mm - Side length of the square floor = 2.4 m **Note:** To express ratios effectively, it's best to convert both measurements to the same unit. We'll convert meters to millimeters since 1 m = 1000 mm. \[ 2.4\, \text{m} = 2.4 \times 1000 = 2400\, \text{mm} \] --- ### **a. Express the side lengths as a ratio** **Tile side length:** 200 mm **Floor side length:** 2400 mm The ratio of the side lengths is: \[ \text{Tile} : \text{Floor} = 200\, \text{mm} : 2400\, \text{mm} \] Simplify the ratio by dividing both terms by 200: \[ 200 : 2400 = \frac{200}{200} : \frac{2400}{200} = 1 : 12 \] **Answer:** The ratio of the side lengths is \(1 : 12\). --- ### **b. Express the area of the floor and the area of one tile as a ratio** First, calculate the areas. **Area of one tile:** \[ \text{Area}_{\text{tile}} = (\text{Side length})^2 = 200^2 = 40,\!000\, \text{mm}^2 \] **Area of the floor:** \[ \text{Area}_{\text{floor}} = (\text{Side length})^2 = 2400^2 = 5,\!760,\!000\, \text{mm}^2 \] Now, form the ratio of the floor area to the tile area: \[ \text{Floor Area} : \text{Tile Area} = 5,\!760,\!000\, \text{mm}^2 : 40,\!000\, \text{mm}^2 \] Simplify the ratio by dividing both terms by 40,000: \[ \frac{5,\!760,\!000}{40,\!000} : \frac{40,\!000}{40,\!000} = 144 : 1 \] **Answer:** The ratio of the floor area to one tile area is \(144 : 1\). --- ### **c. How many tiles are required to cover the floor?** From part **b**, we've established that: \[ \text{Floor Area} : \text{Tile Area} = 144 : 1 \] This means that 144 tiles are required to cover the entire floor. **Answer:** **144 tiles** are needed to cover the floor.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the ratio of the side lengths, we first need to express them in the same unit. The side length of the tile is 200 mm, which is 0.2 m. The side length of the floor is 2.4 m. The ratio of the side lengths can be found by dividing each by its simplest form: \[ \frac{0.2}{2.4} = \frac{1}{12} \] So, the ratio of the side lengths is \( 1:12 \). Next, we calculate the areas. The area of one tile is: \[ \text{Area}_{\text{tile}} = 0.2 \, \text{m} \times 0.2 \, \text{m} = 0.04 \, \text{m}^2 \] The area of the floor is: \[ \text{Area}_{\text{floor}} = 2.4 \, \text{m} \times 2.4 \, \text{m} = 5.76 \, \text{m}^2 \] The ratio of the areas is: \[ \frac{0.04}{5.76} = \frac{1}{144} \] So, the ratio of the areas is \( 1:144 \). To determine how many tiles are required to cover the floor, we divide the area of the floor by the area of one tile: \[ \text{Number of tiles} = \frac{5.76}{0.04} = 144 \] Hence, a total of 144 tiles is required to cover the floor.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad