Pregunta
Fully simplify using only positive exponents. \[ \frac{3 x^{8} y^{7}}{6 x^{6} y^{3}} \]
Ask by Mcfarlane Nichols. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{x^{2} y^{4}}{2}
\]
Solución
To simplify the expression \(\frac{3 x^{8} y^{7}}{6 x^{6} y^{3}}\) using only positive exponents, follow these steps:
1. **Simplify the coefficients:**
\[
\frac{3}{6} = \frac{1}{2}
\]
2. **Simplify the \(x\)-terms:**
\[
\frac{x^{8}}{x^{6}} = x^{8-6} = x^{2}
\]
3. **Simplify the \(y\)-terms:**
\[
\frac{y^{7}}{y^{3}} = y^{7-3} = y^{4}
\]
4. **Combine the simplified parts:**
\[
\frac{1}{2} x^{2} y^{4} \quad \text{or} \quad \frac{x^{2} y^{4}}{2}
\]
Both forms are correct, but typically the expression is written with the constant in the denominator:
\[
\frac{x^{2} y^{4}}{2}
\]
**Final Answer:**
\[
\frac{x^{2} y^{4}}{2}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Let's simplify the expression step by step. First, we can simplify the coefficients (the numerical part) and then the variables. The coefficients: \[ \frac{3}{6} = \frac{1}{2} \] Now for the variables \(x^8\) and \(x^6\): \[ \frac{x^{8}}{x^{6}} = x^{8-6} = x^{2} \] For the variables \(y^7\) and \(y^3\): \[ \frac{y^{7}}{y^{3}} = y^{7-3} = y^{4} \] Now, combine everything: \[ \frac{3 x^{8} y^{7}}{6 x^{6} y^{3}} = \frac{1}{2} x^{2} y^{4} \] Thus, the fully simplified expression using only positive exponents is: \[ \frac{1}{2} x^{2} y^{4} \]
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium