Pregunta
upstudy study bank question image url

A bacterial culture in a petri dish grows at an exponential rate. The petri dish has an area of 256 \( \mathrm{~mm}^{2} \), and the bacterial culture stops growing when it covers this area. The area in \( \mathrm{mm}^{2} \) that the bacteria cover each day is given by the function \( f(x)=2^{x} \). What is a reasonable domain for this function? A \( 0
Ask by Ramos Chambers. in Bahamas
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The reasonable domain for the function is \( 0 < x \leq 8 \).

Solución

To determine a reasonable domain for the function \( f(x) = 2^x \) representing the area covered by the bacteria each day, let's analyze the problem step by step. 1. **Understanding the Growth Function:** - The function \( f(x) = 2^x \) describes exponential growth, where \( x \) represents the number of days. - The bacteria start growing from an initial area (which could be considered as \( f(0) = 1 \) mm² if we assume they start from a single unit area). 2. **Determining When Growth Stops:** - The bacteria stop growing when they cover the entire petri dish, which has an area of 256 mm². - We need to find the value of \( x \) when \( 2^x = 256 \). 3. **Solving for \( x \):** \[ 2^x = 256 \] \[ 256 = 2^8 \quad \text{(since \( 2^8 = 256 \))} \] \[ \Rightarrow x = 8 \] - This means that on the 8th day, the bacteria will have covered the entire petri dish. 4. **Determining the Reasonable Domain:** - The domain should start from day 0 (when growth begins) and end at day 8 (when growth stops). - Therefore, the reasonable domain is \( 0 < x \leq 8 \). **Answer:** D) \( 0 < x \leq 8 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's dive into this bacterial growth fun! The function \( f(x) = 2^x \) describes an exponential growth function where the area covered doubles each day. Since the maximum area of the petri dish is 256 \( \mathrm{~mm}^{2} \), we need \( f(x) \) to stop growing once it reaches this limit. To find the reasonable domain for this function, we consider when \( f(x) \) reaches 256. Setting \( 2^x = 256 \), we find that \( x = 8 \). Thus, \( x \) must be non-negative, leading us to conclude that the reasonable domain is actually \( 0 \leq x \leq 8 \). This corresponds to option D. Additionally, remember that exponential functions grow rapidly, so it’s essential to monitor the growth rate to ensure we don’t overflow our petri dish! For further exploration, don't forget to check out the ‘Logarithmic Functions’ that can help you better understand the relationship between exponential growth and its inverse. Plus, if you're interested in the applications of exponential growth, think about how the human population proliferates or how viruses spread - it’s always fascinating to see math play a role in the real world!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad