Pregunta
upstudy study bank question image url

If \( 1(x, y)=3 x e^{y}+x^{3} y^{2} \) then \( f_{y} \) is

Ask by Young Ellis. in Pakistan
Jan 19,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f_{y} = 3x\, e^{y} + 2x^{3}y \)

Solución

To find the partial derivative of the function \( f(x, y) = 3x e^{y} + x^{3} y^{2} \) with respect to \( y \), denoted as \( f_{y} \), follow these steps: 1. **Differentiate each term with respect to \( y \):** - **First term:** \( 3x e^{y} \) \[ \frac{\partial}{\partial y} (3x e^{y}) = 3x e^{y} \] (Since \( 3x \) is treated as a constant with respect to \( y \).) - **Second term:** \( x^{3} y^{2} \) \[ \frac{\partial}{\partial y} (x^{3} y^{2}) = 2x^{3} y \] (Using the power rule for differentiation.) 2. **Combine the derivatives:** \[ f_{y} = 3x e^{y} + 2x^{3} y \] **Final Answer:** \[ f_{y} = 3x\, e^{y} + 2x^{3}y \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( f_{y} \), we need to compute the partial derivative of the function \( f(x,y) = 3x e^{y} + x^{3}y^{2} \) with respect to \( y \). Calculating \( f_{y} \): 1. Differentiate \( 3x e^{y} \) with respect to \( y \): \[ \frac{\partial}{\partial y}(3x e^{y}) = 3x e^{y} \] 2. Differentiate \( x^{3}y^{2} \) with respect to \( y \): \[ \frac{\partial}{\partial y}(x^{3}y^{2}) = x^{3}(2y) = 2x^{3}y \] Now, combine both results: \[ f_{y} = 3x e^{y} + 2x^{3}y \] Thus, \( f_{y} \) is: \[ f_{y} = 3x e^{y} + 2x^{3}y \] Now let’s dive into some additional information! The function \( f(x,y) = 3x e^{y} + x^{3}y^{2} \) can be viewed as a blend of exponential and polynomial terms, making it quite versatile in applications ranging from physics to economics. For instance, the term \( e^{y} \) can model growth phenomena, while \( y^{2} \) could represent varying returns in investment scenarios. The interplay between these terms creates fascinating dynamics! In solving problems involving partial derivatives, a common mistake is not carefully applying the product rule or ignoring terms that involve the variable of differentiation. Always remember to treat other variables as constants when calculating partial derivatives. Another frequent oversight is misplacing the exponential function’s base, so check your calculations double and triple times—precision is key in calculus!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad