Pregunta
upstudy study bank question image url

The following sequence is a combination of an arithmetic sequence and a geometric sequence: \( 5 ; 5 ; 15 ; 10 ; 25 ; 20 ; 35 ; 40 ; \ldots \) \( 4.1 \quad \) Write down the next 2 terms. 4.2 Calculate \( \mathrm{T}_{42}-\mathrm{T}_{41} \). 4.3 Determine the sum of the first 50 terms. 4.4 Prove that ALL the terms of this infinite sequence will be divisible by 5 . (4)

Ask by Conner Christensen. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The next two terms are 45 and 80. ### 4.2 Calculate \( \mathrm{T}_{42} - \mathrm{T}_{41} \) - **\( \mathrm{T}_{41} \):** Since 41 is odd, it follows the arithmetic sequence pattern. \[ \mathrm{T}_{41} = 5 \times 41 = 205 \] - **\( \mathrm{T}_{42} \):** Since 42 is even, it follows the geometric sequence pattern. \[ \mathrm{T}_{42} = 5 \times 2^{(42/2 - 1)} = 5 \times 2^{20} = 5 \times 1,048,576 = 5,242,880 \] **Calculation:** \[ \mathrm{T}_{42} - \mathrm{T}_{41} = 5,242,880 - 205 = 5,242,675 \] **Answer:** \( \mathrm{T}_{42} - \mathrm{T}_{41} = 5,242,675 \). ### 4.3 Determine the Sum of the First 50 Terms To find the sum of the first 50 terms, we'll separate the sequence into its odd and even parts. - **Sum of Odd-Indexed Terms (\( S_{\text{odd}} \)):** - There are 25 odd terms. - The sequence is an arithmetic series with the first term \( a = 5 \) and common difference \( d = 10 \). - **Sum Formula:** \[ S_{\text{odd}} = \frac{n}{2} \times (2a + (n-1)d) = \frac{25}{2} \times (2 \times 5 + 24 \times 10) = 12.5 \times (10 + 240) = 12.5 \times 250 = 3,125 \] - **Sum of Even-Indexed Terms (\( S_{\text{even}} \)):** - There are 25 even terms. - The sequence is a geometric series with the first term \( a = 5 \) and common ratio \( r = 2 \). - **Sum Formula:** \[ S_{\text{even}} = a \times \frac{r^n - 1}{r - 1} = 5 \times \frac{2^{25} - 1}{2 - 1} = 5 \times (33,554,432 - 1) = 5 \times 33,554,431 = 167,772,155 \] **Total Sum:** \[ S_{\text{total}} = S_{\text{odd}} + S_{\text{even}} = 3,125 + 167,772,155 = 167,775,280 \] **Answer:** The sum of the first 50 terms is **167,775,280**. ### 4.4 Prove That ALL the Terms of This Infinite Sequence Will Be Divisible by 5 - **Odd-Indexed Terms:** - Each term is given by \( T_n = 5n \). - Since \( 5n \) is always divisible by 5, all odd-indexed terms are divisible by 5. - **Even-Indexed Terms:** - Each term is given by \( T_n = 5 \times 2^{(n/2 - 1)} \). - \( 5 \times 2^{(n/2 - 1)} \) is always divisible by 5 because it includes the factor 5. **Conclusion:** Every term in the sequence is divisible by 5. **Answer:** All terms of the sequence are divisible by 5.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

The observed sequence alternates between two patterns: the first subsequence (5, 15, 25, 35, ...) follows a linear increase of 10, while the second subsequence (5, 10, 20, 40, ...) follows a geometric progression with a common ratio of 2. Thus, the next two terms after 40 would be 45 (after 40, following the arithmetic pattern) and 80 (doubling 40, from the geometric pattern). For part 4.2, \( \mathrm{T}_{42} \) corresponds to the arithmetic pattern (the 42nd term in the sequence), while \( \mathrm{T}_{41} \) corresponds to the geometric segment. Since the patterns alternate, you can determine both values easily. The \( \mathrm{T}_{42} \) would thus be 45 and \( \mathrm{T}_{41} \) would be 80. Hence, \( \mathrm{T}_{42} - \mathrm{T}_{41} = 45 - 80 = -35 \). To find the sum of the first 50 terms in part 4.3, observe that the arithmetic sequence part has 25 terms (up to T50 are every second term), and forms an arithmetic series. The first term of this series is 5, and the last term at T50 (which is T25 of the arithmetic sequence) is 5 + (24 * 10) = 245. The formula for the sum of an arithmetic series \( S_n = \frac{n}{2} (a + l) \) where \( n = 25, a = 5, l = 245 \) gives us \( S_{25} = \frac{25}{2} (5 + 245) = 3125 \). The geometric part consists of the first 25 terms (5, 10, 20, …), which can be calculated using the geometric sum formula: \( S = a \frac{(r^n - 1)}{(r - 1)} \). To prove that all terms of the sequence are divisible by 5, we can express each term in the sequence as either \( 5n \) (for the arithmetic subsequence) or as \( 5 \times (2^m) \) (for the geometric subsequence). Since both representations show that every term is a multiple of 5, hence all terms in the sequence are divisible by 5.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad