Pregunta
upstudy study bank question image url

Use the given vertices to graph quadrilateral \( W X Y Z \) and its image after a dilation centered at the origin with scale factor \( k=-0.5 \). \( \begin{array}{l}W(8,-2), X(6,0), Y(-6,4), Z(-2,2) \\ \text { Polygon }\end{array} \)

Ask by Christensen Allan. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After a dilation centered at the origin with a scale factor of -0.5, the original quadrilateral \( WXYZ \) with vertices \( W(8, -2) \), \( X(6, 0) \), \( Y(-6, 4) \), and \( Z(-2, 2) \) transforms to a new quadrilateral \( W'X'Y'Z' \) with vertices \( W'(-4, 1) \), \( X'(-3, 0) \), \( Y'(3, -2) \), and \( Z'(1, -1) \).

Solución

To graph quadrilateral \( WXYZ \) and its image after a dilation centered at the origin with a scale factor \( k = -0.5 \), follow these steps: ### 1. **Original Quadrilateral \( WXYZ \)** The given vertices of quadrilateral \( WXYZ \) are: - \( W(8, -2) \) - \( X(6, 0) \) - \( Y(-6, 4) \) - \( Z(-2, 2) \) **Plotting the Original Quadrilateral:** - **Point W(8, -2):** Move 8 units to the right (positive x-axis) and 2 units down (negative y-axis). - **Point X(6, 0):** Move 6 units to the right on the x-axis. - **Point Y(-6, 4):** Move 6 units to the left (negative x-axis) and 4 units up (positive y-axis). - **Point Z(-2, 2):** Move 2 units to the left and 2 units up. Connect the points in the order \( W \) → \( X \) → \( Y \) → \( Z \) → \( W \) to form the quadrilateral. ### 2. **Dilation Transformation** A dilation transformation changes the size and/or orientation of a figure. The formula for dilation centered at the origin is: \[ \text{If } (x, y) \text{ is a point, then its image } (x', y') \text{ after dilation is } (k \cdot x, k \cdot y) \] Given: - **Scale Factor \( k = -0.5 \):** - The negative sign indicates a reflection across the origin. - The absolute value \( |k| = 0.5 \) indicates the image will be half the size of the original. **Applying Dilation to Each Vertex:** 1. **Point \( W(8, -2) \):** \[ W' = (k \cdot 8, k \cdot (-2)) = (-0.5 \times 8, -0.5 \times -2) = (-4, 1) \] 2. **Point \( X(6, 0) \):** \[ X' = (k \cdot 6, k \cdot 0) = (-0.5 \times 6, -0.5 \times 0) = (-3, 0) \] 3. **Point \( Y(-6, 4) \):** \[ Y' = (k \cdot -6, k \cdot 4) = (-0.5 \times -6, -0.5 \times 4) = (3, -2) \] 4. **Point \( Z(-2, 2) \):** \[ Z' = (k \cdot -2, k \cdot 2) = (-0.5 \times -2, -0.5 \times 2) = (1, -1) \] ### 3. **Image Quadrilateral \( W'X'Y'Z' \)** The vertices of the dilated (image) quadrilateral \( W'X'Y'Z' \) are: - \( W'(-4, 1) \) - \( X'(-3, 0) \) - \( Y'(3, -2) \) - \( Z'(1, -1) \) **Plotting the Image Quadrilateral:** - **Point \( W'(-4, 1) \):** Move 4 units to the left and 1 unit up. - **Point \( X'(-3, 0) \):** Move 3 units to the left on the x-axis. - **Point \( Y'(3, -2) \):** Move 3 units to the right and 2 units down. - **Point \( Z'(1, -1) \):** Move 1 unit to the right and 1 unit down. Connect the points in the order \( W' \) → \( X' \) → \( Y' \) → \( Z' \) → \( W' \) to form the image quadrilateral. ### 4. **Visualization Tips** - **Reflection:** The negative scale factor (\( k = -0.5 \)) causes the image to be a reflection of the original quadrilateral across the origin. - **Scaling:** The size of the image quadrilateral is half that of the original due to the scale factor's absolute value being 0.5. - **Orientation:** Since both scaling and reflection are applied, the image quadrilateral will be smaller and mirrored relative to the original. ### 5. **Summary of Coordinates** | Original Point | Original Coordinates | Dilated Image Coordinates | |----------------|----------------------|---------------------------| | \( W \) | \( (8, -2) \) | \( W'(-4, 1) \) | | \( X \) | \( (6, 0) \) | \( X'(-3, 0) \) | | \( Y \) | \( (-6, 4) \) | \( Y'(3, -2) \) | | \( Z \) | \( (-2, 2) \) | \( Z'(1, -1) \) | By plotting both quadrilaterals on the same coordinate plane, you can clearly see the effect of the dilation transformation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph quadrilateral \( WXYZ \), plot the given vertices on a coordinate plane: - Point \( W(8, -2) \) - Point \( X(6, 0) \) - Point \( Y(-6, 4) \) - Point \( Z(-2, 2) \) Connect these dots in order to form the quadrilateral. Next, for the dilation with center at the origin and scale factor \( k = -0.5 \), each vertex is multiplied by the scale factor. The new coordinates will be: - \( W' = (8 \cdot -0.5, -2 \cdot -0.5) = (-4, 1) \) - \( X' = (6 \cdot -0.5, 0 \cdot -0.5) = (-3, 0) \) - \( Y' = (-6 \cdot -0.5, 4 \cdot -0.5) = (3, -2) \) - \( Z' = (-2 \cdot -0.5, 2 \cdot -0.5) = (1, -1) \) Plot these points \( W', X', Y', Z' \) to visualize the image of the quadrilateral after dilution. The new shape will be smaller and inverted around the origin!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad