Responder
After a dilation centered at the origin with a scale factor of -0.5, the original quadrilateral \( WXYZ \) with vertices \( W(8, -2) \), \( X(6, 0) \), \( Y(-6, 4) \), and \( Z(-2, 2) \) transforms to a new quadrilateral \( W'X'Y'Z' \) with vertices \( W'(-4, 1) \), \( X'(-3, 0) \), \( Y'(3, -2) \), and \( Z'(1, -1) \).
Solución
To graph quadrilateral \( WXYZ \) and its image after a dilation centered at the origin with a scale factor \( k = -0.5 \), follow these steps:
### 1. **Original Quadrilateral \( WXYZ \)**
The given vertices of quadrilateral \( WXYZ \) are:
- \( W(8, -2) \)
- \( X(6, 0) \)
- \( Y(-6, 4) \)
- \( Z(-2, 2) \)
**Plotting the Original Quadrilateral:**
- **Point W(8, -2):** Move 8 units to the right (positive x-axis) and 2 units down (negative y-axis).
- **Point X(6, 0):** Move 6 units to the right on the x-axis.
- **Point Y(-6, 4):** Move 6 units to the left (negative x-axis) and 4 units up (positive y-axis).
- **Point Z(-2, 2):** Move 2 units to the left and 2 units up.
Connect the points in the order \( W \) → \( X \) → \( Y \) → \( Z \) → \( W \) to form the quadrilateral.
### 2. **Dilation Transformation**
A dilation transformation changes the size and/or orientation of a figure. The formula for dilation centered at the origin is:
\[
\text{If } (x, y) \text{ is a point, then its image } (x', y') \text{ after dilation is } (k \cdot x, k \cdot y)
\]
Given:
- **Scale Factor \( k = -0.5 \):**
- The negative sign indicates a reflection across the origin.
- The absolute value \( |k| = 0.5 \) indicates the image will be half the size of the original.
**Applying Dilation to Each Vertex:**
1. **Point \( W(8, -2) \):**
\[
W' = (k \cdot 8, k \cdot (-2)) = (-0.5 \times 8, -0.5 \times -2) = (-4, 1)
\]
2. **Point \( X(6, 0) \):**
\[
X' = (k \cdot 6, k \cdot 0) = (-0.5 \times 6, -0.5 \times 0) = (-3, 0)
\]
3. **Point \( Y(-6, 4) \):**
\[
Y' = (k \cdot -6, k \cdot 4) = (-0.5 \times -6, -0.5 \times 4) = (3, -2)
\]
4. **Point \( Z(-2, 2) \):**
\[
Z' = (k \cdot -2, k \cdot 2) = (-0.5 \times -2, -0.5 \times 2) = (1, -1)
\]
### 3. **Image Quadrilateral \( W'X'Y'Z' \)**
The vertices of the dilated (image) quadrilateral \( W'X'Y'Z' \) are:
- \( W'(-4, 1) \)
- \( X'(-3, 0) \)
- \( Y'(3, -2) \)
- \( Z'(1, -1) \)
**Plotting the Image Quadrilateral:**
- **Point \( W'(-4, 1) \):** Move 4 units to the left and 1 unit up.
- **Point \( X'(-3, 0) \):** Move 3 units to the left on the x-axis.
- **Point \( Y'(3, -2) \):** Move 3 units to the right and 2 units down.
- **Point \( Z'(1, -1) \):** Move 1 unit to the right and 1 unit down.
Connect the points in the order \( W' \) → \( X' \) → \( Y' \) → \( Z' \) → \( W' \) to form the image quadrilateral.
### 4. **Visualization Tips**
- **Reflection:** The negative scale factor (\( k = -0.5 \)) causes the image to be a reflection of the original quadrilateral across the origin.
- **Scaling:** The size of the image quadrilateral is half that of the original due to the scale factor's absolute value being 0.5.
- **Orientation:** Since both scaling and reflection are applied, the image quadrilateral will be smaller and mirrored relative to the original.
### 5. **Summary of Coordinates**
| Original Point | Original Coordinates | Dilated Image Coordinates |
|----------------|----------------------|---------------------------|
| \( W \) | \( (8, -2) \) | \( W'(-4, 1) \) |
| \( X \) | \( (6, 0) \) | \( X'(-3, 0) \) |
| \( Y \) | \( (-6, 4) \) | \( Y'(3, -2) \) |
| \( Z \) | \( (-2, 2) \) | \( Z'(1, -1) \) |
By plotting both quadrilaterals on the same coordinate plane, you can clearly see the effect of the dilation transformation.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución