1. Fhe the wave of the forrouning without using Calculator 6 \( \frac{(24)^{\frac{2}{3}} \cdot \sqrt{18}}{\sqrt[6]{6}(72)^{\frac{1}{8}}} \) (12) \( \sqrt[3]{(\sqrt{13}-\sqrt{5})^{6}} \times \sqrt{(\sqrt{13}+\sqrt{5})^{6}} \) 2. Simprizy (6.) \( \sqrt{\sqrt[3]{x^{\frac{2}{3}}}} \) - (3) Show that \( \sqrt{\frac{x}{x}}+\frac{1}{\sqrt{x}} \) can be writan as \( \frac{\sqrt{x}(1+4)}{x} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Mathematics has a rich history that intertwines with many cultures. The concept of radicals, like square roots and cube roots, dates back to ancient civilizations, including the Babylonians and Greeks, who utilized geometric methods to approximate these values. Isn't it fascinating that the way we handle algebra today was shaped over centuries through works of mathematicians like Euclid and al-Khwarizmi? In the real world, understanding the properties of exponents and roots can significantly streamline various fields—whether it’s calculating areas in architecture, interpreting data trends in statistics, or even optimizing your finances. So next time you find yourself perplexed by numbers and roots, remember, these concepts aren’t just abstract; they actually help engineers design safer buildings and scientists unleash groundbreaking research!