Pregunta
upstudy study bank question image url

The function \( f \) is given by \( f(x)=0.1 x^{4}-0.5 x^{3}-3.3 x^{2}+7.7 x-1.99 \) values of \( b \) does \( \lim _{x \rightarrow b} f(x)=2 \) ?

Ask by Robbins Jimenez. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The values of \( b \) where \( \lim_{x \rightarrow b} f(x) = 2 \) are approximately \( b \approx -5 \), \( b \approx 0.95 \), \( b \approx 1.05 \), and \( b \approx 8 \).

Solución

To find the values of \( b \) such that \( \lim_{x \rightarrow b} f(x) = 2 \), we need to set the function equal to 2 and solve for \( x \): \[ 0.1 x^{4} - 0.5 x^{3} - 3.3 x^{2} + 7.7 x - 1.99 = 2 \] First, we can rearrange the equation: \[ 0.1 x^{4} - 0.5 x^{3} - 3.3 x^{2} + 7.7 x - 3.99 = 0 \] Now, we will solve this polynomial equation for \( x \). Let's denote the polynomial as \( P(x) = 0.1 x^{4} - 0.5 x^{3} - 3.3 x^{2} + 7.7 x - 3.99 \) and find its roots. I will use a tool to solve this polynomial equation. Solve the equation by following steps: - step0: Solve for \(x\): \(0.1x^{4}-0.5x^{3}-3.3x^{2}+7.7x-3.99=0\) - step1: Factor the expression: \(\frac{1}{100}\left(10x^{4}-50x^{3}-330x^{2}+770x-399\right)=0\) - step2: Divide both sides: \(10x^{4}-50x^{3}-330x^{2}+770x-399=0\) - step3: Calculate: \(\begin{align}&x\approx 7.999843\\&x\approx 1.048768\\&x\approx 0.951175\\&x\approx -4.999786\end{align}\) - step4: Rewrite: \(x_{1}\approx -4.999786,x_{2}\approx 0.951175,x_{3}\approx 1.048768,x_{4}\approx 7.999843\) The values of \( b \) for which \( \lim_{x \rightarrow b} f(x) = 2 \) are the roots of the equation we solved. The approximate solutions are: 1. \( b_1 \approx -4.999786 \) 2. \( b_2 \approx 0.951175 \) 3. \( b_3 \approx 1.048768 \) 4. \( b_4 \approx 7.999843 \) Thus, the values of \( b \) are approximately: - \( b \approx -5 \) - \( b \approx 0.95 \) - \( b \approx 1.05 \) - \( b \approx 8 \) These are the points where the limit of the function \( f(x) \) approaches 2.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the values of \( b \) such that \( \lim _{x \rightarrow b} f(x)=2 \), we start by setting \( f(b) = 2 \): \[ 0.1b^4 - 0.5b^3 - 3.3b^2 + 7.7b - 1.99 = 2 \] This simplifies to: \[ 0.1b^4 - 0.5b^3 - 3.3b^2 + 7.7b - 3.99 = 0 \] Now, you would need to solve this polynomial equation to find the values of \( b \). Generally, numerical methods or graphing calculators could be helpful to find approximate solutions since binomial solutions are not straightforward for quartic equations. To further explore solutions, you could plug in a few values for \( b \) or use graphing software to visualize where the polynomial intersects with the x-axis. Each intersection point corresponds to a value of \( b \) for which the limit equals 2. Happy solving!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad