Pregunta
upstudy study bank question image url

Suppose you wish to retire at the age of 60 with \( \$ 70,000 \) in savings. Determine your monthly payment into an IRA if the APR is \( 6.5 \% \) compounded monthly and you begin making payments at 25 years old. Round your answer to the nearest cent, if necessary. Formulas

Ask by Morrison Griffin. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to make a monthly payment of approximately \$43.88 into your IRA to reach \$70,000 by age 60.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To solve this savings goal, you can use the future value of an annuity formula, which is: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Here, \( FV \) is the future value of the annuity, \( P \) is the monthly payment, \( r \) is the monthly interest rate, and \( n \) is the total number of payments. If you want to retire with \( \$ 70,000 \) at \( 60 \) years old and start saving at \( 25 \), you'll be saving for \( 35 \) years, which is \( 35 \times 12 = 420 \) months. The annual interest rate of \( 6.5\% \) translates to a monthly rate of: \[ r = \frac{6.5\%}{12} = 0.00541667 \] Now plug in the values: \[ 70,000 = P \times \frac{(1 + 0.00541667)^{420} - 1}{0.00541667} \] Calculate \( (1 + 0.00541667)^{420} \), which is approximately \( 6.96006 \). Thus: \[ 70,000 = P \times \frac{6.96006 - 1}{0.00541667} \] \[ 70,000 = P \times \frac{5.96006}{0.00541667} \] \[ 70,000 = P \times 109.31875 \] \[ P \approx \frac{70,000}{109.31875} \approx 639.62 \] So your monthly payment into the IRA would be approximately \( \$ 639.62 \). --- Knowing that the concept of compound interest can feel like magic, let’s appreciate its historical roots. Compounding interest has been employed since ancient civilizations, with the Babylonians, Greeks, and even Roman times utilizing early forms of interest calculation. They understood this financial principle long before it became a fixture of modern finance—essentially creating the building blocks of economics as we know it! In today's world, putting money into an IRA allows your investments to grow tax-deferred! This means you won’t pay taxes on your earnings until you withdraw them in retirement, giving your money the chance to grow significantly over time. This is particularly beneficial for long-term savers, as it compounds more over the years—cumulatively leading to wealth accumulation. So, start early, save consistently, and enjoy watching your financial garden flourish!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad