Find the limit if it exists. \[ \lim _{x \rightarrow-6}(5 x+6) \] Which of the following shows the correct expression after the limit properties have been applied? A. \( \lim _{x \rightarrow-6} 6 \) B. 5. \( \lim _{x \rightarrow-6} x \) C. 5. \( \lim _{x \rightarrow-6} x+\lim _{x \rightarrow-6} 6 \) D. 5. \( \lim _{x \rightarrow-6} x=\lim _{x \rightarrow-6} 6 \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \lim _{x \rightarrow-6}(5 x+6)=\square \) (Simplify your answer.) \( \square \) B. The limit does not exist.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the limit, we can directly substitute \( x \) with \(-6\) in the expression: \[ \lim _{x \rightarrow -6}(5x + 6) = 5(-6) + 6 = -30 + 6 = -24. \] Now, among the provided choices, we need to explore which correctly represents the expression after applying limit properties. Choice A states: \[ \lim _{x \rightarrow -6} 6 \] However, this does not reflect the original expression appropriately since we should apply the limit to \( 5x + 6 \). Choice B states: \[ \lim _{x \rightarrow -6} x \] This implies evaluating the limit solely of \( x \), which does not incorporate \( 5x + 6 \). Choice C segments \( 5 \) and shows: \[ \lim _{x \rightarrow -6} x + \lim _{x \rightarrow -6} 6, \] This could indicate evaluating "5 times the limit of \( x \)", but doesn't keep the structure of the original statement. Finally, choice D mentions: \[ 5 \cdot \lim _{x \rightarrow -6} x = \lim _{x \rightarrow -6} 6, \] which also doesn't remain true to the original expression \( 5x + 6 \). None of the choices seem to directly correspond to the limit we calculated, which is \(-24\). However, since B suggests the limit doesn't exist which is incorrect, it seems like the most straightforward simplification is the evaluation of the linear equation directly leading to our result: A. \( \lim _{x \rightarrow -6}(5x + 6) = -24 \)