Pregunta
upstudy study bank question image url

Select the best description of the following exponential equation. \( f(x)=19(3.52)^{x} \) Show your work here Decaying by \( 252 \% \) with every unit of \( x \). Decaying by \( 352 \% \) with every unit of \( x \). Growing by \( 352 \% \) with every unit of \( x \). Growing by \( 252 \% \) with every unit of \( x \).

Ask by Gross Mills. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = 19(3.52)^x \) **grows by 252% with every unit of \( x \)**.

Solución

To determine the best description of the exponential equation: \[ f(x) = 19(3.52)^x \] we need to analyze the components of the equation and understand how they contribute to its behavior. ### Step 1: Identify the General Form The given equation is in the general exponential form: \[ f(x) = a \cdot b^x \] where: - \( a = 19 \) is the initial value (the value of \( f(x) \) when \( x = 0 \)). - \( b = 3.52 \) is the base of the exponential function, which determines the growth or decay rate. ### Step 2: Determine Growth or Decay - **If \( b > 1 \)**: The function represents **exponential growth**. - **If \( 0 < b < 1 \)**: The function represents **exponential decay**. In this case, \( b = 3.52 \), which is greater than 1. Therefore, the function exhibits **exponential growth**. ### Step 3: Calculate the Percentage Growth Rate The percentage growth rate for an exponential function is calculated using the formula: \[ \text{Growth Rate (\%)} = (b - 1) \times 100\% \] Plugging in the value of \( b \): \[ \text{Growth Rate (\%)} = (3.52 - 1) \times 100\% = 2.52 \times 100\% = 252\% \] This means that for every unit increase in \( x \), the function \( f(x) \) grows by **252\%**. ### Conclusion Based on the calculations: - The function \( f(x) = 19(3.52)^x \) **grows** because the base \( 3.52 \) is greater than 1. - The growth rate is **252\%** per unit increase in \( x \). **Therefore, the best description is:** **Growing by \( 252\% \) with every unit of \( x \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To analyze the function \( f(x) = 19(3.52)^{x} \), we can focus on the base \( 3.52 \). Since this base is greater than 1, the function represents exponential growth rather than decay. Next, we can calculate the growth factor by subtracting 1 from the base and converting it to a percentage: 1. Growth factor = \( 3.52 - 1 = 2.52 \) 2. Percentage growth = \( 2.52 \times 100\% = 252\% \) Thus, the function is growing by \( 252\% \) with every unit of \( x \). In conclusion, the correct description is: *Growing by \( 252 \% \) with every unit of \( x \).* Historical Background: Exponential growth concepts can be traced back to the work of mathematicians like Jacob Bernoulli in the 17th century, who studied compound interest and laid foundations for understanding exponential functions. This principle has since been crucial in fields ranging from population dynamics to finance, illustrating how quantities can grow rapidly under certain conditions. Real-World Application: Exponential growth models are especially potent in finance, such as calculating compound interest, where initial investments grow over time. Additionally, they describe phenomena like viral infections or the spread of information on social media, where small changes in the growth rate can lead to drastically different outcomes over time—making understanding these concepts essential for decision-makers.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad