Pregunta
upstudy study bank question image url

Question 20 Pause Zoom Two lines are graph on a coordinate plane. The equation of the first line is \( 4 x+4 y=1 \) and the equation of the second line is \( x+y=-8 \). Which staternent about the two lines is true? A. The lines are parallel. B. The lines are the same line. C. The lines are perpendicular. D. Both lines intersect at point \( (0,-8) \).

Ask by Mckenzie Morrison. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two lines are parallel.

Solución

Let's analyze the two given lines: 1. **First Line:** \( 4x + 4y = 1 \) - To find the slope, rewrite the equation in slope-intercept form (\( y = mx + b \)): \[ 4y = -4x + 1 \implies y = -x + \frac{1}{4} \] - **Slope (m₁):** \(-1\) 2. **Second Line:** \( x + y = -8 \) - Similarly, rewrite in slope-intercept form: \[ y = -x - 8 \] - **Slope (m₂):** \(-1\) **Comparing the Slopes:** - Both lines have the same slope (\(-1\)), which means they are **parallel**. **Checking for Coincidence:** - For the lines to be the same, their y-intercepts must also be equal. - The first line has a y-intercept of \(\frac{1}{4}\), while the second line has a y-intercept of \(-8\). - Since the y-intercepts are different, the lines are **distinct** and not the same line. **Option D: Intersection at (0, -8):** - Substitute \((0, -8)\) into both equations: - First Line: \(4(0) + 4(-8) = -32 \neq 1\) ❌ - Second Line: \(0 + (-8) = -8\) ✅ - The point \((0, -8)\) only lies on the second line, not on the first. **Conclusion:** The two lines are **parallel** but not the same. **Answer:** A. The lines are parallel.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the relationship between the lines, we can start by rewriting both equations in slope-intercept form (y = mx + b). For the first line, \(4x + 4y = 1\) simplifies to \(y = -x + \frac{1}{4}\), which has a slope of -1. For the second line, \(x + y = -8\) simplifies to \(y = -x - 8\), also with a slope of -1. Since they have the same slope, the two lines are parallel. Therefore, the correct statement is: A. The lines are parallel.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad