Pregunta
Solve for x and simplify the answer fully. \[ \frac{x+3}{x-1}=\frac{5}{9} \]
Ask by Stephens Bowen. in the United States
Dec 13,2024
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x=-8 \)
Solución
Solve the equation \( \frac{x+3}{x-1}=\frac{5}{9} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{x+3}{x-1}=\frac{5}{9}\)
- step1: Find the domain:
\(\frac{x+3}{x-1}=\frac{5}{9},x\neq 1\)
- step2: Cross multiply:
\(\left(x+3\right)\times 9=\left(x-1\right)\times 5\)
- step3: Simplify the equation:
\(9\left(x+3\right)=5\left(x-1\right)\)
- step4: Calculate:
\(9x+27=5\left(x-1\right)\)
- step5: Calculate:
\(9x+27=5x-5\)
- step6: Move the expression to the left side:
\(9x+27-\left(5x-5\right)=0\)
- step7: Calculate:
\(4x+32=0\)
- step8: Move the constant to the right side:
\(4x=0-32\)
- step9: Remove 0:
\(4x=-32\)
- step10: Divide both sides:
\(\frac{4x}{4}=\frac{-32}{4}\)
- step11: Divide the numbers:
\(x=-8\)
- step12: Check if the solution is in the defined range:
\(x=-8,x\neq 1\)
- step13: Find the intersection:
\(x=-8\)
The solution to the equation \(\frac{x+3}{x-1}=\frac{5}{9}\) is \(x=-8\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve for \( x \) in the equation \[ \frac{x+3}{x-1}=\frac{5}{9}, \] we can start by cross-multiplying: \[ 9(x + 3) = 5(x - 1). \] Now, distribute both sides: \[ 9x + 27 = 5x - 5. \] Next, we can isolate \( x \) by moving the terms involving \( x \) to one side and the constant terms to the other side: \[ 9x - 5x = -5 - 27, \] which simplifies to: \[ 4x = -32. \] Now, divide both sides by 4: \[ x = -8. \] Therefore, the solution is \[ \boxed{-8}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium