Pregunta
upstudy study bank question image url

Given the function \( h(x)=\frac{2}{x-2}+1 \). 4.2.1 Write down the equations of the asymptotes of \( h \). 4.2.2 Determine the equation of the decreasing axis of symmetry of \( h(x-1) \) (3)

Ask by Rodriquez Mitchell. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**4.2.1 Asymptotes of \( h(x) \):** - **Vertical Asymptote:** \( x = 2 \) - **Horizontal Asymptote:** \( y = 1 \) **4.2.2 Decreasing Axis of Symmetry of \( h(x - 1) \):** - \( y = -x + 4 \)

Solución

Let's analyze the given function and answer both parts of the question step by step. ### Given Function: \[ h(x) = \frac{2}{x - 2} + 1 \] ### 4.2.1 Asymptotes of \( h(x) \): **Vertical Asymptote:** The vertical asymptote occurs where the denominator is zero. \[ x - 2 = 0 \implies x = 2 \] **Horizontal Asymptote:** As \( x \) approaches infinity, the term \( \frac{2}{x - 2} \) approaches 0. \[ \lim_{x \to \pm\infty} h(x) = 1 \] **Equations of the Asymptotes:** - **Vertical Asymptote:** \( x = 2 \) - **Horizontal Asymptote:** \( y = 1 \) ### 4.2.2 Decreasing Axis of Symmetry of \( h(x - 1) \): First, let's find \( h(x - 1) \): \[ h(x - 1) = \frac{2}{(x - 1) - 2} + 1 = \frac{2}{x - 3} + 1 \] **Center of the Hyperbola:** The center is at \( (3, 1) \). **Symmetry Axes:** For the function \( h(x) = \frac{a}{x - h} + k \), the hyperbola is symmetric about two lines: 1. \( y = x - (h - k) \) (increasing symmetry axis) 2. \( y = -x + (h + k) \) (decreasing symmetry axis) Applying this to \( h(x - 1) \): \[ h = 3, \quad k = 1 \] - **Increasing Symmetry Axis:** \( y = x - 2 \) - **Decreasing Symmetry Axis:** \( y = -x + 4 \) Since the question asks for the **decreasing** axis of symmetry: **Equation of the Decreasing Axis of Symmetry:** \[ y = -x + 4 \] --- **Final Answers:** **4.2.1** - **Vertical Asymptote:** \( x = 2 \) - **Horizontal Asymptote:** \( y = 1 \) **4.2.2** - **Decreasing Axis of Symmetry of \( h(x - 1) \):** \( y = -x + 4 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( h(x) = \frac{2}{x-2} + 1 \) has a vertical asymptote where the denominator equals zero, which occurs at \( x = 2 \). Additionally, the horizontal asymptote can be found by looking at the end behavior of the function as \( x \) approaches infinity or negative infinity; thus, the horizontal asymptote is \( y = 1 \). When we consider the function \( h(x-1) = \frac{2}{(x-1)-2} + 1 = \frac{2}{x-3} + 1 \), its vertical asymptote moves to \( x = 3 \). The axis of symmetry for this function has a negative slope, which can be found from its behavior around the vertical asymptote: the decreasing axis of symmetry can be considered as \( x = 3 \), indicating that we would expect symmetry about this line in the context of decreasing behavior around the asymptote.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad