d) \( \frac{2 \cdot 10^{7} \cdot 4 \cdot 10^{5}}{\left(4 \cdot 10^{-2}\right)^{2}} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To simplify the expression \( \frac{2 \cdot 10^{7} \cdot 4 \cdot 10^{5}}{\left(4 \cdot 10^{-2}\right)^{2}} \), we first handle the numerator and denominator separately. The numerator becomes: \( 2 \cdot 4 \cdot 10^{7} \cdot 10^{5} = 8 \cdot 10^{12} \). The denominator, calculated as: \( \left(4 \cdot 10^{-2}\right)^{2} = 16 \cdot 10^{-4} \). Dividing the numerator by the denominator: \[ \frac{8 \cdot 10^{12}}{16 \cdot 10^{-4}} = \frac{8}{16} \cdot 10^{12 + 4} = \frac{1}{2} \cdot 10^{16} = 5 \cdot 10^{15}. \] So, the final result is: \[ \boxed{5 \cdot 10^{15}}. \]