Pregunta
upstudy study bank question image url

The area enclosed by a circular plot is \( 61659 . m \). Eind the diavatery of the plot. Also find the cost of fencing it at the rate of \( ₹ 7 \) per.m2

Ask by Allan Harmon. in India
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The diameter of the plot is approximately 280.2 meters, and the cost of fencing is ₹6,160.

Solución

Certainly! Let's solve the problem step-by-step. ### **Given:** - **Area of the circular plot (A)** = \( 61,659 \, \text{m}^2 \) - **Cost of fencing** = ₹ 7 per meter ### **1. Finding the Diameter of the Plot** The area of a circle is given by the formula: \[ A = \pi r^2 \] where: - \( r \) = radius of the circle - \( \pi \) ≈ 3.1416 **Step 1:** Solve for the radius (\( r \)): \[ r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{61,659}{3.1416}} \approx \sqrt{19,636.7} \approx 140.1 \, \text{meters} \] **Step 2:** Calculate the diameter (\( D \)): \[ D = 2r = 2 \times 140.1 \approx 280.2 \, \text{meters} \] **So, the diameter of the plot is approximately **\( 280.2 \, \text{meters} \). --- ### **2. Calculating the Cost of Fencing** The cost of fencing depends on the perimeter (circumference) of the circular plot. The circumference (\( C \)) of a circle is: \[ C = 2\pi r = \pi D \] **Using the diameter:** \[ C = \pi D = 3.1416 \times 280.2 \approx 880 \, \text{meters} \] **Cost Calculation:** \[ \text{Total Cost} = \text{Circumference} \times \text{Cost per meter} = 880 \times 7 = ₹6,160 \] **Therefore, the cost of fencing the plot is ₹ 6,160.** --- ### **Summary:** - **Diameter of the plot:** ≈ 280.2 meters - **Cost of fencing:** ₹ 6,160

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the diameter of the circular plot, we first need to calculate the radius using the area formula \( A = \pi r^2 \). Given that the area \( A = 61659 \, m^2 \), we can rearrange the formula: \[ r^2 = \frac{A}{\pi} \approx \frac{61659}{3.14} \approx 19625.79 \] \[ r \approx \sqrt{19625.79} \approx 140 \, m \] The diameter \( d \) is twice the radius: \[ d = 2r \approx 2 \times 140 = 280 \, m \] To calculate the cost of fencing, we need the perimeter of the circle, which is given by \( C = 2\pi r \): \[ C \approx 2 \times 3.14 \times 140 \approx 879.6 \, m \] Finally, the cost of fencing at the rate of \( ₹ 7 \) per meter is: \[ \text{Cost} = C \times 7 \approx 879.6 \times 7 \approx ₹ 6157.2 \] So, the diameter of the circular plot is approximately \( 280 \, m \), and the cost of fencing it is about \( ₹ 6157.2 \).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad