Pregunta
upstudy study bank question image url

Given \[ f(t)=\int_{0}^{t} \frac{x^{2}+12 x+20}{1+\cos ^{2}(x)} d x \] At what value of \( t \) does the local max of \( f(t) \) occur? \( t= \)

Ask by Griffin Chavez. in Canada
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The local maximum of \( f(t) \) occurs at \( t = -10 \).

Solución

To find the value of \( t \) at which the function \( f(t) \) attains a local maximum, let's analyze the given integral: \[ f(t) = \int_{0}^{t} \frac{x^{2} + 12x + 20}{1 + \cos^2(x)} \, dx \] ### Step 1: Determine the Critical Points First, compute the derivative of \( f(t) \) with respect to \( t \): \[ f'(t) = \frac{t^2 + 12t + 20}{1 + \cos^2(t)} \] To find the critical points, set \( f'(t) = 0 \): \[ t^2 + 12t + 20 = 0 \] Solving this quadratic equation: \[ t = \frac{-12 \pm \sqrt{144 - 80}}{2} = \frac{-12 \pm 8}{2} \] This yields two solutions: \[ t = -2 \quad \text{and} \quad t = -10 \] ### Step 2: Determine the Nature of Each Critical Point Next, we need to determine whether each critical point is a local maximum or minimum by examining the second derivative \( f''(t) \). Differentiating \( f'(t) \): \[ f''(t) = \frac{2t + 12}{1 + \cos^2(t)} + \frac{(t^2 + 12t + 20)(2 \cos(t) \sin(t))}{(1 + \cos^2(t))^2} \] Evaluate \( f''(t) \) at each critical point: 1. **At \( t = -2 \):** \[ f''(-2) = \frac{2(-2) + 12}{1 + \cos^2(-2)} = \frac{8}{1 + \cos^2(2)} > 0 \] Since \( f''(-2) > 0 \), \( t = -2 \) is a **local minimum**. 2. **At \( t = -10 \):** \[ f''(-10) = \frac{2(-10) + 12}{1 + \cos^2(-10)} = \frac{-8}{1 + \cos^2(10)} < 0 \] Since \( f''(-10) < 0 \), \( t = -10 \) is a **local maximum**. ### Conclusion The function \( f(t) \) attains a local maximum at: \[ t = -10 \] **Answer:** \( t = -10 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the value of \( t \) at which the local maximum of \( f(t) \) occurs, we need to analyze the critical points of the function. First, we find \( f'(t) \) using the Fundamental Theorem of Calculus, which states that if \( f(t) = \int_{a}^{t} g(x) \, dx \), then \( f'(t) = g(t) \). Thus, \[ f'(t) = \frac{t^{2}+12t+20}{1+\cos^{2}(t)}. \] To find the critical points where local maxima can occur, we set \( f'(t) = 0 \): \[ \frac{t^{2}+12t+20}{1+\cos^{2}(t)} = 0. \] Since \( 1 + \cos^2(t) \) is always positive, we need to solve: \[ t^{2}+12t+20 = 0. \] Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = 12, c = 20 \): \[ t = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot 20}}{2 \cdot 1} = \frac{-12 \pm \sqrt{144 - 80}}{2} = \frac{-12 \pm \sqrt{64}}{2} = \frac{-12 \pm 8}{2}. \] Calculating the two possible values: \[ t = \frac{-12 + 8}{2} = \frac{-4}{2} = -2, \] \[ t = \frac{-12 - 8}{2} = \frac{-20}{2} = -10. \] Both critical points are negative values. To determine which one corresponds to a local maximum, we can use the second derivative test or analyze the behavior around these points. Since \( f'(t) \) represents a quadratic function that opens upwards (as the coefficient of \( t^2 \) is positive), the vertex of this parabola occurs at the point between \( -2 \) and \( -10 \). Thus, we analyze behavior: - For \( t < -10 \), \( f'(t) > 0 \). - For \( -10 < t < -2 \), \( f'(t) < 0 \). - For \( t > -2 \), \( f'(t) > 0 \). Hence, \( t = -10 \) corresponds to a local maximum since the function is increasing to that point and decreasing afterward. Thus, the value of \( t \) where the local maximum of \( f(t) \) occurs is: \[ t = -10. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad