Pregunta
upstudy study bank question image url

If \( f(x)=\frac{\sqrt{x}+2}{3-3 x^{2}} \), for which values of \( x \) is 1.2.2 1.2.3 1.2.4 1. non real. (x) undefined

Ask by Gordon Kirk. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(x) \) is non-real for all real numbers \( x \) where \( x < 0 \) and is undefined at \( x = 1 \) and \( x = -1 \).

Solución

To determine the values of \( x \) for which the function \[ f(x) = \frac{\sqrt{x} + 2}{3 - 3x^2} \] is **non-real** or **undefined**, we'll analyze both the numerator and the denominator. ### 1. When is \( f(x) \) **non-real**? For \( f(x) \) to yield real numbers: - **Square Root Constraint**: The expression under the square root must be non-negative. \[ \sqrt{x} \text{ is real} \quad \Rightarrow \quad x \geq 0 \] If \( x < 0 \), \( \sqrt{x} \) becomes non-real (a complex number), making the entire function \( f(x) \) non-real. **Conclusion**: \[ f(x) \text{ is non-real for all } x < 0. \] ### 2. When is \( f(x) \) **undefined**? The function \( f(x) \) is undefined when the denominator equals zero because division by zero is undefined. - **Denominator Constraint**: \[ 3 - 3x^2 = 0 \quad \Rightarrow \quad 3x^2 = 3 \quad \Rightarrow \quad x^2 = 1 \quad \Rightarrow \quad x = \pm 1 \] **However**, considering the domain from the square root constraint (\( x \geq 0 \)): - \( x = -1 \) is already excluded since \( x < 0 \) makes \( f(x) \) non-real. - \( x = 1 \) is within the allowable domain but makes the denominator zero. **Conclusion**: \[ f(x) \text{ is undefined at } x = 1. \] ### **Summary** - **Non-real**: \( f(x) \) is non-real for all real numbers \( x \) where \( x < 0 \). - **Undefined**: \( f(x) \) is undefined at \( x = 1 \). ### **Graphical Illustration** To visualize these constraints: - **Domain for Real Values**: \( x \in [0, 1) \cup (1, \infty) \) - **Excluded Points**: \( x = 1 \) (makes denominator zero) and \( x < 0 \) (makes numerator non-real). --- **Note**: If considering complex numbers, the function can be extended beyond these constraints, but within the realm of real numbers, the above conditions apply. **Answer Summary**: All real numbers x below zero make f (x ) non-real, and x = 1 and x = –1 make f (x ) undefined. In other words: • f(x) is non-real for every real x with x < 0 • f(x) is undefined at x = 1 and x = −1

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine where the function \( f(x) = \frac{\sqrt{x} + 2}{3 - 3x^2} \) is undefined, we need to look for values of \( x \) that make the denominator equal to zero. Setting the denominator to zero, we have: \[ 3 - 3x^2 = 0 \] \[ 3x^2 = 3 \] \[ x^2 = 1 \] \[ x = \pm 1 \] So, \( f(x) \) is undefined at \( x = 1 \) and \( x = -1 \). Additionally, since \( \sqrt{x} \) is part of the numerator, \( x \) must also be non-negative for \( \sqrt{x} \) to be real. This means \( x \) must be greater than or equal to 0. Thus, the function \( f(x) \) is undefined at \( x = 1 \) and for any \( x < 0 \), where it does not exist in the real number system. Therefore, the function is non-real for all \( x < 0 \) and it specifically becomes undefined at \( x = 1 \). The final values of \( x \) where \( f(x) \) is undefined are \( x < 0 \) and \( x = 1 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad