Responder
\( f(x) \) is non-real for all real numbers \( x \) where \( x < 0 \) and is undefined at \( x = 1 \) and \( x = -1 \).
Solución
To determine the values of \( x \) for which the function
\[
f(x) = \frac{\sqrt{x} + 2}{3 - 3x^2}
\]
is **non-real** or **undefined**, we'll analyze both the numerator and the denominator.
### 1. When is \( f(x) \) **non-real**?
For \( f(x) \) to yield real numbers:
- **Square Root Constraint**: The expression under the square root must be non-negative.
\[
\sqrt{x} \text{ is real} \quad \Rightarrow \quad x \geq 0
\]
If \( x < 0 \), \( \sqrt{x} \) becomes non-real (a complex number), making the entire function \( f(x) \) non-real.
**Conclusion**:
\[
f(x) \text{ is non-real for all } x < 0.
\]
### 2. When is \( f(x) \) **undefined**?
The function \( f(x) \) is undefined when the denominator equals zero because division by zero is undefined.
- **Denominator Constraint**:
\[
3 - 3x^2 = 0 \quad \Rightarrow \quad 3x^2 = 3 \quad \Rightarrow \quad x^2 = 1 \quad \Rightarrow \quad x = \pm 1
\]
**However**, considering the domain from the square root constraint (\( x \geq 0 \)):
- \( x = -1 \) is already excluded since \( x < 0 \) makes \( f(x) \) non-real.
- \( x = 1 \) is within the allowable domain but makes the denominator zero.
**Conclusion**:
\[
f(x) \text{ is undefined at } x = 1.
\]
### **Summary**
- **Non-real**: \( f(x) \) is non-real for all real numbers \( x \) where \( x < 0 \).
- **Undefined**: \( f(x) \) is undefined at \( x = 1 \).
### **Graphical Illustration**
To visualize these constraints:
- **Domain for Real Values**: \( x \in [0, 1) \cup (1, \infty) \)
- **Excluded Points**: \( x = 1 \) (makes denominator zero) and \( x < 0 \) (makes numerator non-real).
---
**Note**: If considering complex numbers, the function can be extended beyond these constraints, but within the realm of real numbers, the above conditions apply.
**Answer Summary**:
All real numbers x below zero make f (x ) non-real, and x = 1 and x = –1 make f (x ) undefined. In other words:
• f(x) is non-real for every real x with x < 0
• f(x) is undefined at x = 1 and x = −1
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución