Pregunta
\( \theta \) is an angle in a right-angled triangle. \[ \theta=\tan ^{-1}(0.36) \] Work out the value of \( \theta \). Give your answer to 1 d.p.
Ask by Burton Wilson. in the United Kingdom
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \theta \approx 19.8^\circ \)
Solución
To find the value of \( \theta \) where:
\[
\theta = \tan^{-1}(0.36)
\]
we need to determine the angle whose tangent is 0.36.
**Steps to Calculate \( \theta \):**
1. **Understanding the Tangent Function:**
- The tangent of an angle in a right-angled triangle is the ratio of the opposite side to the adjacent side.
- Therefore, \( \tan(\theta) = 0.36 \) implies that the opposite side is 0.36 times the length of the adjacent side.
2. **Using a Calculator:**
- To find \( \theta \), we take the inverse tangent (also known as arctangent) of 0.36.
- Ensure your calculator is set to **degrees** (since the answer is typically expected in degrees unless specified otherwise).
3. **Calculation:**
\[
\theta = \tan^{-1}(0.36) \approx 19.8^\circ
\]
**Final Answer:**
\[
\theta \approx 19.8^\circ
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the value of \( \theta = \tan^{-1}(0.36) \), you can use a calculator. When you input \( \tan^{-1}(0.36) \), you should get approximately \( 19.8^\circ \). So, rounding to one decimal place, \( \theta \approx 19.8^\circ \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium