Pregunta
upstudy study bank question image url

Activity 5. Angle of Inclination. 22 Januaryzoz5 1. Determine the indination of the line. Round your answer to 2 decimal places with points \( A\left(3 ; \frac{7}{2}\right) \) \( B(-8 ;-2) \). 2. Determine the angle of indlination (correct to 1 decimal place) of the straight line through \( (2 ; 1) \notin(-3 ;-9) \) 3. Find the angle \( \theta \) and round off your answer to \( z \)

Ask by Wang Matthews. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Answers:** 1. The angle of inclination is **26.57 degrees**. 2. The angle of inclination is **63.4 degrees**. 3. Cannot determine the angle with the given information.

Solución

Sure, let's tackle each of the problems related to the **Angle of Inclination** step by step. ## Understanding Angle of Inclination The **angle of inclination** of a line is the acute angle that the line makes with the positive direction of the x-axis. It is denoted by \( \theta \) and can be calculated using the slope (\( m \)) of the line with the formula: \[ \theta = \arctan(m) \] Where: - \( m \) is the slope of the line. - \( \arctan \) is the inverse tangent function. Let's proceed with each question. --- ## 1. Determining the Inclination of the Line through Points \( A(3, \frac{7}{2}) \) and \( B(-8, -2) \) ### Step 1: Calculate the Slope (\( m \)) of the Line Given two points \( A(x_1, y_1) \) and \( B(x_2, y_2) \), the slope \( m \) is calculated as: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in the values: \[ m = \frac{-2 - \frac{7}{2}}{-8 - 3} = \frac{-\frac{11}{2}}{-11} = \frac{1}{2} \] So, \( m = 0.5 \). ### Step 2: Calculate the Angle of Inclination (\( \theta \)) \[ \theta = \arctan(0.5) \approx 26.565^\circ \] ### Step 3: Round the Angle to 2 Decimal Places \[ \theta \approx 26.57^\circ \] **Answer:** The angle of inclination is **26.57 degrees**. --- ## 2. Determining the Angle of Inclination of the Straight Line through \( (2, 1) \) and \( (-3, -9) \) ### Step 1: Calculate the Slope (\( m \)) of the Line \[ m = \frac{-9 - 1}{-3 - 2} = \frac{-10}{-5} = 2 \] So, \( m = 2 \). ### Step 2: Calculate the Angle of Inclination (\( \theta \)) \[ \theta = \arctan(2) \approx 63.4349^\circ \] ### Step 3: Round the Angle to 1 Decimal Place \[ \theta \approx 63.4^\circ \] **Answer:** The angle of inclination is **63.4 degrees**. --- ## 3. Finding the Angle \( \theta \) and Rounding Off Your Answer It seems there's incomplete information in **Question 3**. To find the angle \( \theta \), we need either: - Two points defining a line (to calculate the slope), or - The slope of the line directly. If you provide the necessary details or clarify the question, I'd be happy to help you solve it! --- Feel free to reach out if you have more questions or need further clarification on these problems!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the inclination of the line \( AB \) with points \( A(3, 3.5) \) and \( B(-8, -2) \), you first calculate the slope \( m \) of the line using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 3.5}{-8 - 3} = \frac{-5.5}{-11} = 0.5 \). The angle of inclination \( \theta \) is given by \( \theta = \tan^{-1}(m) \). Therefore, \( \theta = \tan^{-1}(0.5) \approx 26.57^\circ \). For the second part with the point \( (2, 1) \) and a line not passing through \( (-3, -9) \), we assume you want the inclination with a slight twist. If we imagine a line passing through \( (2, 1) \) at an arbitrary slope like 2, then \( m = 2 \) and so, \( \theta = \tan^{-1}(2) \approx 63.43^\circ \), rounding to 1 decimal place would give us \( 63.4^\circ \) depending on the context of the question regarding the second point’s relationship! Happy calculating! 🌟

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad