Pregunta
upstudy study bank question image url

Solve this system of cquations: \( \left\{\begin{array}{l}3 x-2 y=-8 \\ y=\frac{3}{2} x-2\end{array}\right. \)

Ask by Marsh Gonzalez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution to the system because the equations represent parallel lines that never intersect.

Solución

To solve the given system of equations: \[ \begin{cases} 3x - 2y = -8 \\ y = \dfrac{3}{2}x - 2 \end{cases} \] we can use the **substitution method**. Here's a step-by-step solution: ### Step 1: Substitute \( y \) from the Second Equation into the First From the second equation: \[ y = \dfrac{3}{2}x - 2 \] Substitute this expression for \( y \) into the first equation: \[ 3x - 2\left(\dfrac{3}{2}x - 2\right) = -8 \] ### Step 2: Simplify the Equation Expand the terms: \[ 3x - 2 \times \dfrac{3}{2}x + 2 \times 2 = -8 \] \[ 3x - 3x + 4 = -8 \] ### Step 3: Combine Like Terms Combine the \( x \)-terms: \[ 0x + 4 = -8 \] \[ 4 = -8 \] ### Step 4: Analyze the Result The equation \( 4 = -8 \) is a **contradiction**; it is never true. This means that there is no value of \( x \) and \( y \) that simultaneously satisfies both equations. ### Conclusion **The system of equations has no solution.** This is because the two equations represent parallel lines with the same slope but different y-intercepts, meaning they never intersect. **Final Answer:** There is no solution to the system because the equations describe parallel lines.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations, we can substitute the expression for \(y\) from the second equation into the first equation. 1. Substitute \(y = \frac{3}{2} x - 2\) into \(3x - 2y = -8\): \(3x - 2\left(\frac{3}{2}x - 2\right) = -8\) 2. Distribute the -2: \(3x - 3x + 4 = -8\) 3. This simplifies to: \(4 = -8\) Since this is a contradiction, it indicates that there is no solution to this system of equations. The two lines represented by these equations are parallel and never intersect. Hence, the system is inconsistent!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad