Which is an exponential growth function? \( \begin{array}{l}f(x)=6(0.25)^{x} \\ f(x)=0.25(5.25)^{x} \\ f(x)=-4.25^{x} \\ f(x)=(-1.25)^{x}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Exponential growth functions have a base greater than 1. In this case, \( f(x) = 0.25(5.25)^{x} \) stands out, as it features the base \( 5.25 \), which is greater than 1 and indicates growth as \( x \) increases. The other functions either have bases less than 1 or negative bases, which do not represent exponential growth. You know what else is cool? Exponential growth can be observed in real-life phenomena! For example, the population of certain species can grow exponentially when resources are abundant. You often see this in bacteria cultures that double in population under ideal conditions - a great reminder that sometimes growth can happen way faster than you'd expect, just like an exponential graph shooting skyward!