Pregunta
Analyze the effect on the domain of \( f(x)=x^{3} \), when \( f(x) \) is replaced by \( f(b x) \) with \( b<0 \). (1 point) The domain remains all real numbers. The domain changes to zero. The domain changes to all negative real numbers. The domain remains all positive real numbers.
Ask by Barnett Lindsey. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain remains all real numbers.
Solución
When you replace \( f(x) = x^3 \) with \( f(bx) \) where \( b < 0 \), the function becomes:
\[
f(bx) = (bx)^3 = b^3 x^3
\]
The domain of the original function \( f(x) = x^3 \) is all real numbers (\( \mathbb{R} \)). Replacing \( x \) with \( bx \) does not impose any new restrictions on \( x \). The cube function is defined for all real numbers, regardless of the scaling factor \( b \), even if \( b \) is negative.
**Answer:** The domain remains all real numbers.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The function \( f(x) = x^3 \) has a domain of all real numbers, meaning you can input any real number into the function. When we replace \( f(x) \) with \( f(bx) \) where \( b < 0 \), we have \( f(bx) = (bx)^3 = b^3 x^3 \). Since \( b \) is negative, \( bx \) can still take on any real number value; thus, the domain of \( f(bx) \) remains all real numbers. So, the correct answer is: The domain remains all real numbers.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium