Pregunta
upstudy study bank question image url

A system of equations is given. Equation 1:5x-2y=10 Equation \( 2: 4 x-3 y=1^{15} \) Explain how to eliminate \( x \) in the system of equations.

Ask by Fernandez Sherman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To eliminate \( x \), multiply the first equation by 4 and the second by 5 to make the coefficients of \( x \) equal. Then subtract the second equation from the first to cancel \( x \), solving for \( y \).

Solución

To eliminate the variable \( x \) from the given system of equations, you can use the **method of elimination**. Here's a step-by-step explanation of how to achieve this: ### Given System of Equations: 1. **Equation 1:** \( 5x - 2y = 10 \) 2. **Equation 2:** \( 4x - 3y = 1^{15} \) *Note:* \( 1^{15} = 1 \), so Equation 2 simplifies to: \[ 4x - 3y = 1 \] ### Step 1: Make the Coefficients of \( x \) Identical To eliminate \( x \), we need the coefficients of \( x \) in both equations to be the same (in absolute value). We can achieve this by finding the Least Common Multiple (LCM) of the coefficients of \( x \) in both equations. - **Coefficient of \( x \) in Equation 1:** 5 - **Coefficient of \( x \) in Equation 2:** 4 - **LCM of 5 and 4:** 20 **Multiply each equation by the necessary factor to make the coefficient of \( x \) equal to 20:** - **Multiply Equation 1 by 4:** \[ 4 \times (5x - 2y) = 4 \times 10 \\ \Rightarrow 20x - 8y = 40 \quad \text{(Equation 3)} \] - **Multiply Equation 2 by 5:** \[ 5 \times (4x - 3y) = 5 \times 1 \\ \Rightarrow 20x - 15y = 5 \quad \text{(Equation 4)} \] ### Step 2: Subtract One Equation from the Other to Eliminate \( x \) Now that both Equation 3 and Equation 4 have the same coefficient for \( x \), subtract one equation from the other to eliminate \( x \). - **Subtract Equation 4 from Equation 3:** \[ (20x - 8y) - (20x - 15y) = 40 - 5 \\ \Rightarrow 20x - 8y - 20x + 15y = 35 \\ \Rightarrow 7y = 35 \] - **Solve for \( y \):** \[ y = \frac{35}{7} = 5 \] ### Summary By multiplying the first equation by 4 and the second equation by 5, both equations have the same coefficient for \( x \) (which is 20). Subtracting one from the other eliminates \( x \), allowing you to solve for \( y \). Once \( y \) is found, you can substitute it back into either original equation to find the value of \( x \). --- **Final Answer:** Multiply the first equation by 4 and the second by 5 so both have 20x. Then subtract one equation from the other, canceling out the x terms. This eliminates x from the system.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To eliminate \( x \) in the system of equations, you'll want to manipulate the equations so that the coefficients of \( x \) in both equations match. Start by multiplying Equation 1 by 4, resulting in \( 20x - 8y = 40 \). For Equation 2, multiply it by 5, leading to \( 20x - 15y = 5 \). Now, both equations have the same coefficient for \( x \) (20). Next, subtract the first modified equation from the second: \( (20x - 15y) - (20x - 8y) = 5 - 40 \). This simplifies to \( -7y = -35\), allowing you to solve for \( y \) easily. By finding \( y \), you can substitute it back into one of the original equations to solve for \( x \). Fun fact: you can visualize this process like two dancers in sync, making sure their steps match before they smoothly pull off the next move! As you dive deeper into this, keep in mind one common pitfall: not aligning the equations properly before elimination. It's like trying to line up for a group photo with everyone facing different directions—you either end up with a messy shot or, worse, missing someone in the frame! Make those equations uniform before you take your perfect picture of the solution!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad