Pregunta
upstudy study bank question image url

Divide. If the polynomial does not divide evenly, include the remainder as a fraction. \[ \left(-10 v^{3}-54 v^{2}+27 v-56\right) \div(v+6) \]

Ask by Willis Craig. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The division of \(-10v^{3} - 54v^{2} + 27v - 56\) by \(v + 6\) results in \(-10v^{2} + 6v - 9\) with a remainder of \(-2\). Therefore, the final expression is \(-10v^{2} + 6v - 9 - \frac{2}{v + 6}\).

Solución

To divide the polynomial \(-10v^{3} - 54v^{2} + 27v - 56\) by \(v + 6\), we can use **synthetic division**. ### Steps: 1. **Set Up Synthetic Division:** - The divisor is \(v + 6\), so we use \(v = -6\) for synthetic division. - Write down the coefficients of the polynomial: \(-10\), \(-54\), \(27\), \(-56\). 2. **Perform Synthetic Division:** \[ \begin{array}{c|cccc} -6 & -10 & -54 & 27 & -56 \\ & & 60 & -6 & 54 \\ \hline & -10 & 6 & -9 & -2 \\ \end{array} \] - **Step 1:** Bring down the first coefficient \(-10\). - **Step 2:** Multiply \(-10\) by \(-6\) to get \(60\) and add to the next coefficient: \(-54 + 60 = 6\). - **Step 3:** Multiply \(6\) by \(-6\) to get \(-36\) and add to the next coefficient: \(27 - 36 = -9\). - **Step 4:** Multiply \(-9\) by \(-6\) to get \(54\) and add to the last coefficient: \(-56 + 54 = -2\). 3. **Interpret the Results:** - The numbers at the bottom row represent the coefficients of the quotient and the remainder. - The quotient is \(-10v^{2} + 6v - 9\). - The remainder is \(-2\). 4. **Write the Final Answer:** Since the polynomial does not divide evenly, include the remainder as a fraction over the original divisor. \[ \boxed{-10v^{2} + 6v - 9 - \frac{2}{v + 6}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let’s perform polynomial long division for \((-10 v^{3} - 54 v^{2} + 27 v - 56) \div (v + 6)\). The first step is to divide the leading term of the dividend \(-10v^3\) by the leading term of the divisor \(v\), which gives us \(-10v^2\). Next, we multiply \(-10v^2\) by the entire divisor \((v + 6)\), resulting in \(-10v^3 - 60v^2\). Now, subtract \(-10v^3 - 60v^2\) from \(-10v^3 - 54v^2\) to get \(6v^2\). Bring down the next term \(27v\) to get \(6v^2 + 27v\). Now, divide the leading term \(6v^2\) by \(v\), giving us \(6v\). Multiply \(6v\) by \((v + 6)\) to yield \(6v^2 + 36v\). Subtract this from \(6v^2 + 27v\) to get \(-9v\). Bring down the next term \(-56\) to get \(-9v - 56\). Divide \(-9v\) by \(v\) to get \(-9\). Multiply \(-9\) by \((v + 6)\) yielding \(-9v - 54\). Finally, subtract this from \(-9v - 56\) to get a remainder of \(-2\). Thus, the result for the division is: \[ -10v^{2} + 6v - 9 - \frac{2}{v + 6} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad