Divide. If the polynomial does not divide evenly, include the remainder as a fraction. \[ \left(-10 v^{3}-54 v^{2}+27 v-56\right) \div(v+6) \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
First, let’s perform polynomial long division for \((-10 v^{3} - 54 v^{2} + 27 v - 56) \div (v + 6)\). The first step is to divide the leading term of the dividend \(-10v^3\) by the leading term of the divisor \(v\), which gives us \(-10v^2\). Next, we multiply \(-10v^2\) by the entire divisor \((v + 6)\), resulting in \(-10v^3 - 60v^2\). Now, subtract \(-10v^3 - 60v^2\) from \(-10v^3 - 54v^2\) to get \(6v^2\). Bring down the next term \(27v\) to get \(6v^2 + 27v\). Now, divide the leading term \(6v^2\) by \(v\), giving us \(6v\). Multiply \(6v\) by \((v + 6)\) to yield \(6v^2 + 36v\). Subtract this from \(6v^2 + 27v\) to get \(-9v\). Bring down the next term \(-56\) to get \(-9v - 56\). Divide \(-9v\) by \(v\) to get \(-9\). Multiply \(-9\) by \((v + 6)\) yielding \(-9v - 54\). Finally, subtract this from \(-9v - 56\) to get a remainder of \(-2\). Thus, the result for the division is: \[ -10v^{2} + 6v - 9 - \frac{2}{v + 6} \]