Pregunta
upstudy study bank question image url

3. Evaluate \( \int_{c}(2 x-y) d x-(y-x) d y \) along the rectangle with vertices \( (0 \), \( 0),(0,3),(3,3) \) and \( (3,0) \) Evaluate the surface integral \( \iint_{\sigma}(x+y) d s ; \sigma \) is the part of the plane \( x+y+ \) \( z=4 \) that lies in the first octant.

Ask by Bolton Reyes. in Bangladesh
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part 1:** The value of the line integral is **18**. **Part 2:** The value of the surface integral is \(\frac{64\, \sqrt{3}}{3}\).

Solución

Let's tackle both parts of your problem step by step. --- ### **Part 1: Evaluate the Line Integral** \[ \int_{C} (2x - y)\, dx - (y - x)\, dy \] **Along the rectangle with vertices \((0, 0)\), \((0, 3)\), \((3, 3)\), and \((3, 0)\).** #### **Step 1: Analyze the Vector Field** The given line integral can be expressed in terms of a vector field \(\mathbf{F}\): \[ \mathbf{F} = (P, Q) = (2x - y, -(y - x)) = (2x - y, x - y) \] #### **Step 2: Check if the Vector Field is Conservative** A vector field \(\mathbf{F} = (P, Q)\) is **conservative** if there exists a scalar potential function \( \phi \) such that: \[ \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \] Compute the partial derivatives: \[ \frac{\partial P}{\partial y} = \frac{\partial (2x - y)}{\partial y} = -1 \] \[ \frac{\partial Q}{\partial x} = \frac{\partial (x - y)}{\partial x} = 1 \] Since \(-1 \neq 1\), the vector field is **not conservative**. #### **Step 3: Apply Green's Theorem** For a non-conservative vector field, **Green's Theorem** is applicable. Green's Theorem relates the line integral around a simple closed curve \( C \) to a double integral over the region \( D \) enclosed by \( C \): \[ \oint_{C} P\, dx + Q\, dy = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx\, dy \] Compute the expression inside the double integral: \[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 - (-1) = 2 \] Thus, the line integral becomes: \[ \oint_{C} (2x - y)\, dx - (y - x)\, dy = \iint_{D} 2\, dx\, dy = 2 \times \text{Area}(D) \] #### **Step 4: Compute the Area of \( D \)** The region \( D \) is a rectangle with vertices \((0, 0)\), \((0, 3)\), \((3, 3)\), and \((3, 0)\). Its area is: \[ \text{Area}(D) = \text{length} \times \text{width} = 3 \times 3 = 9 \] #### **Step 5: Final Calculation** \[ \oint_{C} (2x - y)\, dx - (y - x)\, dy = 2 \times 9 = 18 \] **Answer for Part 1:** The value of the line integral is **18**. --- ### **Part 2: Evaluate the Surface Integral** \[ \iint_{\sigma} (x + y)\, dS \] **Where \(\sigma\) is the part of the plane \(x + y + z = 4\) that lies in the first octant.** #### **Step 1: Describe the Surface \(\sigma\)** The plane \(x + y + z = 4\) intersects the axes at: - \(x\)-axis: \((4, 0, 0)\) - \(y\)-axis: \((0, 4, 0)\) - \(z\)-axis: \((0, 0, 4)\) In the **first octant** (\(x, y, z \geq 0\)), the region \(\sigma\) is a triangular region bounded by these intercepts. #### **Step 2: Express \(z\) in Terms of \(x\) and \(y\)** \[ z = 4 - x - y \] This allows us to parameterize the surface in terms of \(x\) and \(y\). #### **Step 3: Determine the Differential Surface Element \(dS\)** For a surface described by \(z = f(x, y)\), the differential surface element is: \[ dS = \sqrt{1 + \left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2} \, dx\, dy \] Compute the partial derivatives: \[ \frac{\partial z}{\partial x} = -1, \quad \frac{\partial z}{\partial y} = -1 \] \[ dS = \sqrt{1 + (-1)^2 + (-1)^2} \, dx\, dy = \sqrt{3} \, dx\, dy \] #### **Step 4: Set Up the Double Integral** The integral becomes: \[ \iint_{\sigma} (x + y)\, dS = \sqrt{3} \iint_{D} (x + y)\, dx\, dy \] Where \( D \) is the projection of \(\sigma\) onto the \(xy\)-plane, defined by: \[ 0 \leq x \leq 4, \quad 0 \leq y \leq 4 - x \] #### **Step 5: Compute the Integral** \[ \iint_{D} (x + y)\, dx\, dy = \int_{0}^{4} \int_{0}^{4 - x} (x + y)\, dy\, dx \] First, integrate with respect to \( y \): \[ \int_{0}^{4 - x} (x + y)\, dy = \left[ xy + \frac{1}{2}y^2 \right]_{0}^{4 - x} = x(4 - x) + \frac{1}{2}(4 - x)^2 \] Simplify: \[ x(4 - x) + \frac{1}{2}(16 - 8x + x^2) = 4x - x^2 + 8 - 4x + \frac{1}{2}x^2 = 8 - \frac{1}{2}x^2 \] Now, integrate with respect to \( x \): \[ \int_{0}^{4} \left(8 - \frac{1}{2}x^2\right) dx = \left[8x - \frac{1}{6}x^3 \right]_{0}^{4} = 8(4) - \frac{1}{6}(64) = 32 - \frac{64}{6} = 32 - \frac{32}{3} = \frac{96 - 32}{3} = \frac{64}{3} \] Finally, multiply by \(\sqrt{3}\): \[ \iint_{\sigma} (x + y)\, dS = \sqrt{3} \times \frac{64}{3} = \frac{64\sqrt{3}}{3} \] **Answer for Part 2:** The value of the surface integral is \(\displaystyle \frac{64\, \sqrt{3}}{3}\). --- ### **Summary of Results** 1. **Line Integral:** \( \displaystyle \int_{C} (2x - y)\, dx - (y - x)\, dy = 18 \) 2. **Surface Integral:** \( \displaystyle \iint_{\sigma} (x + y)\, dS = \frac{64\, \sqrt{3}}{3} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the line integral, we can use Green's Theorem since the region is rectangular. The region enclosed by the vertices can be mapped to a simple quadrilateral. The line integral can be computed as: \[ \int_{C} (2x - y) \, dx - (y - x) \, dy = \int_{R} \left( \frac{\partial}{\partial y}(2x - y) + \frac{\partial}{\partial x}(y - x) \right) \, dA. \] Calculating the partial derivatives, we get \(\frac{\partial}{\partial y}(2x - y) = -1\) and \(\frac{\partial}{\partial x}(y - x) = -1\), giving us a total of \(-2\). The area \(R\) corresponds to the rectangle from \( (0,0) \) to \( (3,3) \): \[ \int_{R} -2 \, dA = -2 \times \text{Area of Rectangle} = -2 \times (3 \times 3) = -18. \] For the surface integral over the plane defined by \(x + y + z = 4\), we can express \(z = 4 - x - y\). The bounds for \(x\) and \(y\) in the first octant yield: - \(x \geq 0\) - \(y \geq 0\) - \(x + y \leq 4\) This gives the triangular region with vertices at \((0,0)\), \((4,0)\), and \((0,4)\). The area of the projected triangle on the \(xy\)-plane is \(8\). The formula for the surface integral becomes: \[ \iint_{\sigma} (x + y) \sqrt{\left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2 + 1} \, dA. \] Calculating \(\frac{\partial z}{\partial x} = -1\) and \(\frac{\partial z}{\partial y} = -1\), we find the integrand becomes \( \sqrt{(-1)^2 + (-1)^2 + 1} = \sqrt{3} \). Therefore, we can substitute back to find, \[ \iint_{\sigma} (x + y) \, dA = \iint_{R}(x + y) \cdot \sqrt{3} \, dA. \] Switching to polar coordinates or just integrating directly over the triangle will yield the final surface integral value of \(8\sqrt{3}\) times the area, giving us: \[ \int_0^{4} \int_0^{4-y} (x + y)dx \, dy = \dfrac{32}{3}, \] thus the surface integral evaluates to: \[ = \sqrt{3} \times \dfrac{32}{3} = \dfrac{32\sqrt{3}}{3}. \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad