Pregunta
Complete the pattern: \[ \begin{array}{l}0.9017 \div 10=\square \\ 90.17 \div 1,000=\square \\ 901.7 \div 10,000=\square \\ 9,017 \div 100,000=\square\end{array} \]
Ask by Clark Sullivan. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Each division results in 0.09017.
0.9017 ÷ 10 = 0.09017
90.17 ÷ 1,000 = 0.09017
901.7 ÷ 10,000 = 0.09017
9,017 ÷ 100,000 = 0.09017
Solución
Sure, let's complete the pattern by calculating each division:
1. **\(0.9017 \div 10 = \square\)**
\[
0.9017 \div 10 = 0.09017
\]
2. **\(90.17 \div 1,000 = \square\)**
\[
90.17 \div 1,000 = 0.09017
\]
3. **\(901.7 \div 10,000 = \square\)**
\[
901.7 \div 10,000 = 0.09017
\]
4. **\(9,017 \div 100,000 = \square\)**
\[
9,017 \div 100,000 = 0.09017
\]
**Completed Pattern:**
\[
\begin{array}{l}
0.9017 \div 10 = 0.09017 \\
90.17 \div 1,000 = 0.09017 \\
901.7 \div 10,000 = 0.09017 \\
9,017 \div 100,000 = 0.09017
\end{array}
\]
**Explanation of the Pattern:**
Each numerator is \(0.9017\) multiplied by increasing powers of 10:
- \(0.9017 \times 10^1 = 9.017\)
- \(0.9017 \times 10^2 = 90.17\)
- \(0.9017 \times 10^3 = 901.7\)
- \(0.9017 \times 10^4 = 9,017\)
Correspondingly, each denominator is \(10\) raised to successive powers:
- \(10^1 = 10\)
- \(10^3 = 1,000\)
- \(10^4 = 10,000\)
- \(10^5 = 100,000\)
When you divide the numerator by the denominator, the result consistently simplifies back to \(0.09017\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The first calculation is \(0.9017 \div 10 = 0.09017\). The second calculation is \(90.17 \div 1,000 = 0.09017\). The third calculation is \(901.7 \div 10,000 = 0.09017\). The fourth calculation is \(9,017 \div 100,000 = 0.09017\). Thus, the pattern is consistent, resulting in: \[ 0.09017 \] for each blank.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium