Pregunta
upstudy study bank question image url

Answer: Ravi lost \( \frac{1}{3} \) of his marbles and gave Joe \( \frac{1}{4} \) of the remainder. He remained with 48 marbles. How many did he have at first?

Ask by Simpson Cook. in Trinidad and Tobago
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Ravi originally had 96 marbles.

Solución

Let's determine how many marbles Ravi originally had by breaking down the problem step by step. **Let \( x \) be the initial number of marbles Ravi had.** 1. **Ravi lost \( \frac{1}{3} \) of his marbles:** \[ \text{Marbles lost} = \frac{1}{3}x \] \[ \text{Remaining marbles} = x - \frac{1}{3}x = \frac{2}{3}x \] 2. **Ravi gave Joe \( \frac{1}{4} \) of the remaining marbles:** \[ \text{Marbles given to Joe} = \frac{1}{4} \times \frac{2}{3}x = \frac{2}{12}x = \frac{1}{6}x \] \[ \text{Marbles left after giving to Joe} = \frac{2}{3}x - \frac{1}{6}x = \frac{4}{6}x - \frac{1}{6}x = \frac{3}{6}x = \frac{1}{2}x \] 3. **After all these transactions, Ravi has 48 marbles left:** \[ \frac{1}{2}x = 48 \] \[ x = 48 \times 2 = 96 \] **Therefore, Ravi originally had **96** marbles.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let \( x \) be the total number of marbles Ravi had at first. After losing \( \frac{1}{3} \) of his marbles, he had \( \frac{2}{3}x \) left. He then gave Joe \( \frac{1}{4} \) of the remaining marbles, which is \( \frac{1}{4} \times \frac{2}{3}x = \frac{1}{6}x \). The number of marbles he was left with is: \[ \frac{2}{3}x - \frac{1}{6}x \] To combine these fractions, we find a common denominator of 6: \[ \frac{4}{6}x - \frac{1}{6}x = \frac{3}{6}x = \frac{1}{2}x \] According to the problem, this remaining amount equals 48 marbles: \[ \frac{1}{2}x = 48 \] Multiplying both sides by 2, we find: \[ x = 96 \] So, Ravi initially had 96 marbles. Now, let's dive into some additional fun facts to enrich your learning experience! Ravi's marbles journey connects beautifully with the concept of fractions and rationing, commonly observed in ancient trade practices where items were divided into parts to ensure fair exchange among traders, much like how Ravi distributed his marbles! If you ever find yourself dividing quantities, remember to keep track of your fractions carefully! A common mistake is to forget about the initial totals before division. For instance, always double-check the amount you're starting with after taking away a portion, as it can lead to miscalculating what's left, just like how Ravi almost lost track of his marbles!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad