Pregunta
upstudy study bank question image url

Fatoumata spots an airplane on radar that is currently approaching in a straight line, and that will fly directly overhead. The plane maintains a constant altitude of 7400 feet. Fatoumata initially measures an angle of elevation of \( 17^{\circ} \) to the plane at point \( A \). At some later time, she measures an angle of elevation of \( 34^{\circ} \) to the plane at point \( B \). Find the distance the plane traveled from point \( A \) to point \( B \). Round your answer to the nearest foot if necessary.

Ask by Hodgson Schneider. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The plane traveled approximately 13,233 feet from point A to point B.

Solución

To determine the distance the plane traveled from point \( A \) to point \( B \), we'll analyze the situation using trigonometry. **Given:** - The plane maintains a constant altitude of \( h = 7,\!400 \) feet. - Angle of elevation at point \( A \): \( \theta_A = 17^\circ \). - Angle of elevation at point \( B \): \( \theta_B = 34^\circ \). **Approach:** 1. **Determine Horizontal Distances:** - At point \( A \), the horizontal distance (\( x \)) from Fatoumata to the plane can be found using the tangent function: \[ \tan(\theta_A) = \frac{h}{x} \implies x = \frac{h}{\tan(\theta_A)} \] - Similarly, at point \( B \), the horizontal distance (\( x' \)) is: \[ \tan(\theta_B) = \frac{h}{x'} \implies x' = \frac{h}{\tan(\theta_B)} \] 2. **Calculate the Horizontal Distances:** - Compute \( \tan(17^\circ) \approx 0.305730 \) and \( \tan(34^\circ) \approx 0.674508 \). - Therefore: \[ x = \frac{7,\!400}{0.305730} \approx 24,\!204.36 \text{ feet} \] \[ x' = \frac{7,\!400}{0.674508} \approx 10,\!970.96 \text{ feet} \] 3. **Determine the Distance Traveled by the Plane:** - The plane travels the difference between these two horizontal distances: \[ \text{Distance} = x - x' \approx 24,\!204.36 - 10,\!970.96 \approx 13,\!233.4 \text{ feet} \] - Rounding to the nearest foot: \[ \text{Distance} \approx 13,\!233 \text{ feet} \] **Final Answer:** The plane traveled approximately **13,233 feet** from point \( A \) to point \( B \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the distance the plane traveled from point A to point B, we can use trigonometry by applying the tangent function. First, let’s determine the horizontal distances from Fatoumata to the plane at points A and B. 1. **Calculating Distance at Point A**: - We have the angle of elevation \( \theta_A = 17^{\circ} \) and the altitude of the plane \( h = 7400 \) feet. - Using the tangent function: \[ \tan(\theta_A) = \frac{h}{d_A} \implies d_A = \frac{h}{\tan(\theta_A)} = \frac{7400}{\tan(17^{\circ})} \approx \frac{7400}{0.3057} \approx 24206.67 \text{ feet} \] 2. **Calculating Distance at Point B**: - Now, for point B, we have the angle of elevation \( \theta_B = 34^{\circ} \): - Again using the tangent function: \[ \tan(\theta_B) = \frac{h}{d_B} \implies d_B = \frac{h}{\tan(\theta_B)} = \frac{7400}{\tan(34^{\circ})} \approx \frac{7400}{0.6745} \approx 10940.68 \text{ feet} \] 3. **Finding the Distance Traveled by the Plane (AB)**: - The distance the plane traveled from point A to point B is the difference between \( d_A \) and \( d_B \): \[ \text{Distance} = d_A - d_B \approx 24206.67 - 10940.68 \approx 13265.99 \text{ feet} \] Rounding to the nearest foot, the distance the plane traveled from point A to point B is approximately **13,266 feet**.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad