Pregunta
upstudy study bank question image url

Question An account is opened with an initial deposit of \( \$ 700 \) and earns \( 3.3 \% \) interest compounded semi-annually. What will the account be worth in 3 years? Round your answer to the nearest cent. Do NOT round until you have calculated the final answer.

Ask by Powell Munoz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 3 years, the account will be worth \$772.23.

Solución

To determine the future value of an account with compound interest, we'll use the **compound interest formula**: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) = the amount of money accumulated after \( t \) years, including interest. - \( P \) = the principal amount (initial deposit) = \$700. - \( r \) = annual interest rate (in decimal) = 3.3% = 0.033. - \( n \) = number of times the interest is compounded per year = 2 (semi-annually). - \( t \) = number of years the money is invested = 3. **Step 1: Plug the values into the formula** \[ A = 700 \left(1 + \frac{0.033}{2}\right)^{2 \times 3} \] \[ A = 700 \left(1 + 0.0165\right)^6 \] \[ A = 700 \left(1.0165\right)^6 \] **Step 2: Calculate \( \left(1.0165\right)^6 \)** To compute \( 1.0165^6 \) without rounding until the final step: \[ 1.0165^6 \approx 1.1031798 \] **Step 3: Multiply by the principal** \[ A = 700 \times 1.1031798 \approx 772.22586 \] **Step 4: Round to the nearest cent** \[ A \approx \$772.23 \] **Final Answer:** After 3 years, the account will be worth **\$772.23**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the future value of an account with compound interest, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 700 \) - \( r = 0.033 \) (which is \( 3.3\% \)) - \( n = 2 \) (since interest is compounded semi-annually) - \( t = 3 \) Plugging in the values: \[ A = 700 \left(1 + \frac{0.033}{2}\right)^{2 \times 3} \] \[ A = 700 \left(1 + 0.0165\right)^{6} \] \[ A = 700 \left(1.0165\right)^{6} \] Calculating \( (1.0165)^6 \): \[ (1.0165)^6 \approx 1.10530 \] Now substituting back: \[ A \approx 700 \times 1.10530 \approx 773.71 \] Therefore, the account will be worth approximately \( \$ 773.71 \) after 3 years.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad