Pregunta
upstudy study bank question image url

Suppose \( \$ 24,000 \) is deposited into an account paying \( 7.25 \% \) interest, which is compounded continuously. How much money will be in the account after ten years if no withdrawals or additional deposits are made? \( \$ 47,897.10 \) \( \$ 49,553.54 \) \( \$ 46,414.20 \) \( \$ 48,326.40 \)

Ask by Tran Carrillo. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After ten years, the account will have approximately \$49,553.54.

Solución

To determine the amount of money in the account after ten years with continuous compounding, we can use the **continuous compound interest formula**: \[ A = P \times e^{rt} \] **Where:** - \( A \) = the amount of money accumulated after \( t \) years, including interest. - \( P \) = the principal amount (\$24,000). - \( r \) = annual interest rate (7.25% or 0.0725). - \( t \) = time the money is invested for (10 years). - \( e \) = Euler's number (approximately 2.71828). **Step-by-Step Calculation:** 1. **Plug in the values:** \[ A = 24,000 \times e^{0.0725 \times 10} \] \[ A = 24,000 \times e^{0.725} \] 2. **Calculate \( e^{0.725} \):** - \( e^{0.725} \approx 2.0647 \) 3. **Multiply by the principal:** \[ A \approx 24,000 \times 2.0647 \approx 49,553.54 \] **Therefore, the amount in the account after ten years is approximately \$49,553.54.** **Answer:** \$49,553.54

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the amount of money in the account after ten years with continuous compounding, you can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial deposit), - \( r \) is the annual interest rate (decimal), - \( t \) is the time in years, - \( e \) is the base of the natural logarithm (approximately 2.71828). In this case: - \( P = 24,000 \) - \( r = 0.0725 \) - \( t = 10 \) Plugging in these values: \[ A = 24000 \cdot e^{0.0725 \cdot 10} = 24000 \cdot e^{0.725} \] Calculating \( e^{0.725} \): \[ e^{0.725} \approx 2.066 \] Now inserting back into the equation for \( A \): \[ A \approx 24000 \cdot 2.066 \approx 49,584 \] The closest option to this calculated amount is \( \$ 49,553.54 \). So the correct answer is \( \$ 49,553.54 \). --- To add some fun facts, did you know that continuous compounding is like adding a little extra interest on top of interest? It’s pretty much how savings accounts make your money work overtime! Also, for all you math lovers out there, using exponential functions beyond finance can lead to exciting applications like population growth models and computing compound interest for investments. Whether it’s money or people, growth is exciting!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad