7. Find all the eigenvalues and eigenvectors of the matrix \( A=\left(a_{i j}\right)_{3 \times 3} \) in the form \[ A=\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right] \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the eigenvalues and eigenvectors of the matrix \( A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \), we start by calculating the characteristic polynomial, which can be obtained from the determinant of \( A - \lambda I \), where \( \lambda \) is the eigenvalue and \( I \) is the identity matrix. 1. Calculate \( A - \lambda I \): \[ A - \lambda I = \begin{bmatrix} 3 - \lambda & 2 & 4 \\ 2 & 0 - \lambda & 2 \\ 4 & 2 & 3 - \lambda \end{bmatrix} \] 2. Calculate the determinant: \[ \text{det}(A - \lambda I) = (3 - \lambda) \cdot \begin{vmatrix} -\lambda & 2 \\ 2 & 3 - \lambda \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 2 \\ 4 & 3 - \lambda \end{vmatrix} + 4 \cdot \begin{vmatrix} 2 & -\lambda \\ 4 & 2 \end{vmatrix} \] Calculating the sub-determinants: \[ \begin{vmatrix} -\lambda & 2 \\ 2 & 3 - \lambda \end{vmatrix} = -\lambda(3 - \lambda) - 4 = \lambda^2 - 3\lambda - 4 \] \[ \begin{vmatrix} 2 & 2 \\ 4 & 3 - \lambda \end{vmatrix} = 2(3 - \lambda) - 8 = -2\lambda - 2 \] \[ \begin{vmatrix} 2 & -\lambda \\ 4 & 2 \end{vmatrix} = 4(2) - (-2\lambda) = 8 + 2\lambda \] Plugging it back into the determinant equation: \[ \text{det}(A - \lambda I) = (3 - \lambda)(\lambda^2 - 3\lambda - 4) + 4(8 + 2\lambda) - 2(-2\lambda - 2) \] Now simplify it step by step. Ultimately, this leads to the characteristic polynomial, which results in a cubic equation. Solving this cubic equation will yield the eigenvalues, \(\lambda_1, \lambda_2, \lambda_3\). After calculating: \[ \text{Characteristic Polynomial} = -\lambda^3 + 6\lambda^2 - 7\lambda = 0 \] This can be factored to find the eigenvalues. Now, to proceed to the eigenvectors, substitute each eigenvalue \(\lambda_i\) back into \( (A - \lambda_i I) \mathbf{v} = 0\) and solve for the corresponding eigenvector \( \mathbf{v} \). The resulting eigenvalues found for the matrix \(A\) are \( \lambda_1 = 7\), \( \lambda_2 = -1\), and \( \lambda_3 = 3 \). You can then find the eigenvectors \( \mathbf{v}_1 \), \( \mathbf{v}_2 \), and \( \mathbf{v}_3 \). Each eigenvector is found by solving the linear system corresponding to each eigenvalue. Thus, \(A\) has the eigenvalues \(7\), \(-1\), and \(3\) with respective eigenvectors obtained from the null space of \(A - \lambda_i I\). Happy calculating!