Pregunta
Determine the distance between \( P(-3,-2) \) and \( B(-8 ; 2) \), giving your answer as an exact value.
Ask by Cross Li. in Singapore
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The distance between points \( P(-3, -2) \) and \( B(-8, 2) \) is \( \sqrt{41} \).
Solución
To determine the distance between the points \( P(-3, -2) \) and \( B(-8, 2) \), we can use the **distance formula**:
\[
\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
**Step-by-Step Calculation:**
1. **Identify the coordinates:**
- \( P(x_1, y_1) = (-3, -2) \)
- \( B(x_2, y_2) = (-8, 2) \)
2. **Calculate the differences:**
- \( x_2 - x_1 = -8 - (-3) = -5 \)
- \( y_2 - y_1 = 2 - (-2) = 4 \)
3. **Plug the differences into the distance formula:**
\[
\text{Distance} = \sqrt{(-5)^2 + 4^2} = \sqrt{25 + 16} = \sqrt{41}
\]
So, the exact distance between points \( P \) and \( B \) is:
\[
\boxed{\sqrt{41}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To determine the distance between the points \( P(-3, -2) \) and \( B(-8, 2) \), we can use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting in the coordinates, where \( P(-3, -2) \) is \( (x_1, y_1) \) and \( B(-8, 2) \) is \( (x_2, y_2) \): \[ d = \sqrt{((-8) - (-3))^2 + (2 - (-2))^2} \] Calculating the differences: \[ d = \sqrt{((-8 + 3))^2 + (2 + 2)^2} \] \[ d = \sqrt{(-5)^2 + (4)^2} \] \[ d = \sqrt{25 + 16} \] \[ d = \sqrt{41} \] Thus, the distance between points \( P \) and \( B \) is \( \sqrt{41} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium