Pregunta
\begin{tabular}{l|l} Use factoring to solve the equation. \\ \( c^{2}-2 c-35=0 \) & \( \begin{array}{l}\text { The solution is } c=\square \\ \text { (Type an integer or a simplified fraction. Use a comma to separate answers } \\ \text { as needed.) }\end{array} \)\end{tabular}
Ask by Peterson Long. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solutions are \( c = -5 \) and \( c = 7 \).
Solución
\[
\begin{array}{l}
\text{The solution is } c = -5, \, 7 \\
\end{array}
\]
**Explanation:**
To solve the quadratic equation \( c^{2} - 2c - 35 = 0 \) by factoring:
1. **Find two numbers that multiply to -35** (the constant term) **and add to -2** (the coefficient of the middle term).
- The numbers are **5** and **-7** because:
\[
5 \times (-7) = -35 \quad \text{and} \quad 5 + (-7) = -2
\]
2. **Factor the quadratic equation** using these numbers:
\[
c^{2} - 2c - 35 = (c + 5)(c - 7) = 0
\]
3. **Set each factor equal to zero** and solve for \( c \):
\[
c + 5 = 0 \quad \Rightarrow \quad c = -5
\]
\[
c - 7 = 0 \quad \Rightarrow \quad c = 7
\]
So, the solutions are \( c = -5 \) and \( c = 7 \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the equation \( c^2 - 2c - 35 = 0 \) using factoring, we first need to find two numbers that multiply to \(-35\) (the constant term) and add up to \(-2\) (the coefficient of \(c\)). Those numbers are \(5\) and \(-7\). We can now rewrite the equation as: \[ (c - 7)(c + 5) = 0 \] Setting each factor equal to zero gives us the solutions: \[ c - 7 = 0 \quad \Rightarrow \quad c = 7 \] \[ c + 5 = 0 \quad \Rightarrow \quad c = -5 \] So, the solutions are \( c = 7, -5 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium