3. A block of mass 2 kg slides along a horizontal surface that has negligible friction except for one tection, as shown. The block arrives at the rough section with a speed of \( 4 \mathrm{~m} / \mathrm{s} \) and leaves it 0.5 s later with a speed of \( 1 \mathrm{~m} / \mathrm{s} \). What is the work done by frictional force exerted on the block?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the work done by the frictional force, we can use the work-energy theorem, which states that the work done on an object is equal to the change in its kinetic energy. 1. **Calculate initial and final kinetic energy**: - Initial kinetic energy (KE_initial) = \(\frac{1}{2} m v_i^2 = \frac{1}{2} \times 2 \, \text{kg} \times (4 \, \text{m/s})^2 = 16 \, \text{J}\) - Final kinetic energy (KE_final) = \(\frac{1}{2} m v_f^2 = \frac{1}{2} \times 2 \, \text{kg} \times (1 \, \text{m/s})^2 = 1 \, \text{J}\) 2. **Calculate the change in kinetic energy**: - Change in kinetic energy = KE_final - KE_initial = \(1 \, \text{J} - 16 \, \text{J} = -15 \, \text{J}\) 3. **Work done by the frictional force**: - Since the work done by friction is equal to the change in kinetic energy, the work done by the frictional force is \(-15 \, \text{J}\). Thus, the work done by the frictional force exerted on the block is \(-15 \, \text{J}\).