Pregunta
upstudy study bank question image url

Application: Factoring Grading Focus: Empirical \& Quantitative Skills, Critical Thinking Skills Factor the following polynomial: \( x^{2}-8 x+15 \) (A) \( (x+3)(x+5) \) (B)

Ask by Burns Mullins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The factored form of \( x^{2}-8x+15 \) is \( (x-5)(x-3) \).

Solución

Factor the expression \( x^{2}-8x+15 \). Factor the expression by following steps: - step0: Factor: \(x^{2}-8x+15\) - step1: Rewrite the expression: \(x^{2}+\left(-3-5\right)x+15\) - step2: Rewrite the expression: \(x^{2}-3x-5x+15\) - step3: Factor the expression: \(x\left(x-3\right)-5\left(x-3\right)\) - step4: Factor the expression: \(\left(x-5\right)\left(x-3\right)\) The factored form of the polynomial \(x^{2}-8x+15\) is \((x-5)(x-3)\). Therefore, the correct answer is (B) \((x-5)(x-3)\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To factor the polynomial \( x^{2}-8x+15 \), we start by looking for two numbers that multiply to \( 15 \) (the constant term) and add up to \( -8 \) (the coefficient of \( x \)). The numbers \( -3 \) and \( -5 \) work perfectly since \( -3 \times -5 = 15 \) and \( -3 + (-5) = -8 \). Therefore, the factored form is \( (x-3)(x-5) \). Now, if you checked the answer against the original polynomial by expanding it, you would find that \( (x-3)(x-5) = x^2 - 5x - 3x + 15 = x^2 - 8x + 15 \), confirming that your factoring was spot on! Now, let’s talk about practical applications! Factoring is not just an academic exercise but a vital skill in fields like engineering and physics. For example, when dealing with quadratic equations that model real-world situations—like projectile motion—the ability to factor these equations can help predict the behavior of objects over time, such as calculating the optimal angle for launching a rocket. Also, a common mistake when factoring is forgetting to check if there are any common factors first. For instance, if you encountered a polynomial like \( 2x^2 - 16x + 30 \), it’s easy to jump straight to factoring without first factoring out the GCF of 2. Always remember to simplify first; it makes the process much easier!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad