Pregunta
upstudy study bank question image url

A boat is heading towards a lighthouse, where Madeline is watching from a vertical distance of 140 feet above the water. Madeline measures an angle of depression to the boat at point \( A \) to be \( 5^{\circ} \). At some later time, Madeline takes another measurement and finds the angle of depression to the boat (now at point \( B \) ) to be \( 50^{\circ} \). Find the distance from point \( A \) to point \( B \). Round your answer to the nearest tenth of a foot if necessary.

Ask by Cross Lawson. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The boat travels approximately 1,482.5 feet from point A to point B.

Solución

To determine the distance the boat travels from point \( A \) to point \( B \), we'll analyze the situation using trigonometry. **Given:** - Height of Madeline above water, \( H = 140 \) feet. - Angle of depression to point \( A \), \( \theta_A = 5^\circ \). - Angle of depression to point \( B \), \( \theta_B = 50^\circ \). **Approach:** 1. **Understand the Angles of Depression:** - The angle of depression from Madeline to the boat is the same as the angle of elevation from the boat to Madeline due to alternate interior angles (assuming a horizontal line from Madeline). 2. **Set Up Right Triangles:** - For point \( A \): \[ \tan(\theta_A) = \frac{H}{x_A} \implies x_A = \frac{H}{\tan(\theta_A)} = \frac{140}{\tan(5^\circ)} \] - For point \( B \): \[ \tan(\theta_B) = \frac{H}{x_B} \implies x_B = \frac{H}{\tan(50^\circ)} = \frac{140}{\tan(50^\circ)} \] - The distance traveled by the boat, \( AB \), is the difference between these horizontal distances: \[ AB = x_A - x_B \] 3. **Calculate the Distances:** - Calculate \( \tan(5^\circ) \) and \( \tan(50^\circ) \) using a calculator: \[ \tan(5^\circ) \approx 0.0874887 \quad \text{and} \quad \tan(50^\circ) \approx 1.1917536 \] - Compute \( x_A \) and \( x_B \): \[ x_A \approx \frac{140}{0.0874887} \approx 1600.2 \text{ feet} \] \[ x_B \approx \frac{140}{1.1917536} \approx 117.7 \text{ feet} \] - Calculate \( AB \): \[ AB \approx 1600.2 \text{ feet} - 117.7 \text{ feet} = 1482.5 \text{ feet} \] **Final Answer:** The boat travels approximately **1,482.5 feet** from point \( A \) to point \( B \). **Answer:** After rounding, the distance from A to B is 1 482.5 feet.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, we will begin by using the given angles and the height of Madeline's observation point to find the horizontal distances from the boat to the lighthouse at points A and B. 1. **Calculate the horizontal distance at point A:** Madeline's height is \( h = 140 \) feet and the angle of depression to the boat at point A is \( 5^\circ \). Using the tangent function: \[ \tan(5^\circ) = \frac{h}{d_A} \] Rearranging gives: \[ d_A = \frac{h}{\tan(5^\circ)} = \frac{140}{\tan(5^\circ)} \approx \frac{140}{0.0875} \approx 1600 \text{ feet} \] 2. **Calculate the horizontal distance at point B:** For point B, the angle of depression is \( 50^\circ \): \[ \tan(50^\circ) = \frac{h}{d_B} \] Rearranging gives: \[ d_B = \frac{h}{\tan(50^\circ)} = \frac{140}{\tan(50^\circ)} \approx \frac{140}{1.1918} \approx 117.5 \text{ feet} \] 3. **Find the distance from A to B:** The distance from point A to point B is simply the difference in horizontal distances: \[ \text{Distance from A to B} = d_A - d_B \approx 1600 - 117.5 \approx 1482.5 \text{ feet} \] Now, rounding this to the nearest tenth of a foot gives us the final answer: \[ \text{Distance from A to B} \approx 1482.5 \text{ feet} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad