Question 1-38 Which situation would provide a counterexample to the statement below? You can connect any three points to form a triangle. Three coplanar points. Two points on \( \overleftrightarrow{A B} \) and one point not on \( \stackrel{\leftrightarrow}{A B} \) Two points not on \( \stackrel{\leftarrow}{A B} \) and one point on \( \overleftrightarrow{A B} \) Three collinear points.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Connecting three collinear points is a classic example of a counterexample to the statement that any three points can form a triangle. When all three points lie on the same straight line, they fail to create a closed shape with three sides, which is the defining characteristic of a triangle. Imagine a straight line drawn between points A, B, and C. No matter how you connect these points, there’s no "wiggle room" to create a triangle—just a straight line of points without any angles! It’s like trying to dance in a straight line; you need some space to boogie!