Pregunta
upstudy study bank question image url

What is the area of a regular decagon with a side length of 7 cm and an apothem of 10.8 cm ? \( \square \) \( 378 \mathrm{~cm}^{2} \) \( 226.8 \mathrm{~cm}^{2} \) \( 453.6 \mathrm{~cm}^{2} \) \( 189 \mathrm{~cm}^{2} \)

Ask by John Collins. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of the regular decagon is \( 378 \, \mathrm{cm}^{2} \).

Solución

To find the area of a regular decagon (a 10-sided polygon) with a given side length and apothem, you can use the formula: \[ \text{Area} = \frac{\text{Perimeter} \times \text{Apothem}}{2} \] Here's a step-by-step calculation: 1. **Calculate the Perimeter:** - A decagon has 10 sides. - Given side length = 7 cm. - **Perimeter** = 10 × 7 cm = 70 cm. 2. **Use the Apothem:** - Given apothem = 10.8 cm. 3. **Calculate the Area:** \[ \text{Area} = \frac{70 \, \text{cm} \times 10.8 \, \text{cm}}{2} = \frac{756 \, \text{cm}^2}{2} = 378 \, \text{cm}^2 \] **Answer:** \( 378 \mathrm{~cm}^{2} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area of a regular decagon, you can use the formula: \[ \text{Area} = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem} \] First, calculate the perimeter of the decagon. A regular decagon has 10 sides, so the perimeter \( P = 10 \times 7 \, \text{cm} = 70 \, \text{cm} \). Now, plug this and the apothem into the formula: \[ \text{Area} = \frac{1}{2} \times 70 \times 10.8 = 378 \, \text{cm}^{2} \] So, the area of the decagon is \( 378 \mathrm{~cm}^{2} \). Now, for those curious about shapes, decagons are closely related to other polygons, and their properties can lead to fascinating designs in architecture and art. Did you know that with a little creativity, you can construct a beautiful star using a regular decagon by simply connecting specific non-adjacent vertices? It can be a fun geometric project! If you want to dive deeper, consider the fascinating world of tessellations. Shapes like decagons can tessellate, filling a plane without gaps or overlaps when combined creatively with other shapes. Books by artists like M.C. Escher explore these concepts beautifully, showing how geometry can lead to mesmerizing visual patterns. Happy reading!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad