Condense the expression. \[ \log 6-3 \log \frac{1}{3} \] \( \log [?] \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To condense the expression \(\log 6 - 3 \log \frac{1}{3}\), we can use the properties of logarithms. Recall that \(a \log b = \log b^a\) and \(\log a - \log b = \log \frac{a}{b}\). First, rewrite \(3 \log \frac{1}{3}\) as \(\log \left(\frac{1}{3}\right)^3\): \[ 3 \log \frac{1}{3} = \log \left(\frac{1}{3}\right)^3 = \log \left(\frac{1}{27}\right). \] Now substitute this back into the original expression: \[ \log 6 - \log \left(\frac{1}{27}\right) = \log \left( \frac{6}{\frac{1}{27}} \right). \] This simplifies to: \[ \log \left( 6 \times 27 \right) = \log 162. \] So, the final condensed expression is: \[ \log[162]. \]