Pregunta
upstudy study bank question image url

Exercises What is the value of the discriminant and what is the number of real solutions for each equation? \( \begin{array}{lll}\text { 7. } x^{2}+x-42=0 & \text { 8. }-x^{2}+13 x-40=0 & \text { 9. } x^{2}+2 x+5=0 \\ \begin{array}{lll}\text { 10. } x^{2}=18 x-81 & \text { 11. }-x^{2}+7 x+44=0 & \text { 12. } \frac{1}{4} x^{2}-5 x+25=0\end{array} \\ \begin{array}{lll}\text { 13. } 2 x^{2}+7=5 x & \text { 14. } 4 x^{2}+25 x=21 & \text { 17. } \frac{1}{2} x^{2}+2 x+3=0\end{array} & \text { 18. } \frac{1}{6} x^{2}=2 x+18\end{array} \) Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

Ask by Burns Simpson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the discriminants and the number of real solutions for each equation: 1. **7. \( x^{2} + x - 42 = 0 \)** - Discriminant: 169 - Real Solutions: 2 2. **8. \( -x^{2} + 13x - 40 = 0 \)** - Discriminant: 9 - Real Solutions: 2 3. **9. \( x^{2} + 2x + 5 = 0 \)** - Discriminant: -16 - Real Solutions: 0 4. **10. \( x^{2} - 18x + 81 = 0 \)** - Discriminant: 0 - Real Solutions: 1 5. **11. \( -x^{2} + 7x + 44 = 0 \)** - Discriminant: 225 - Real Solutions: 2 6. **12. \( \frac{1}{4}x^{2} - 5x + 25 = 0 \)** - Discriminant: 0 - Real Solutions: 1 7. **13. \( 2x^{2} - 5x + 7 = 0 \)** - Discriminant: -31 - Real Solutions: 0 8. **14. \( 4x^{2} + 25x - 21 = 0 \)** - Discriminant: 961 - Real Solutions: 2 9. **17. \( \frac{1}{2}x^{2} + 2x + 3 = 0 \)** - Discriminant: -2 - Real Solutions: 0 10. **18. \( x^{2} - 12x - 108 = 0 \)** - Discriminant: 576 - Real Solutions: 2

Solución

Sure, let's analyze each of the given quadratic equations to determine their discriminants and the number of real solutions they possess. The discriminant \( D \) of a quadratic equation \( ax^2 + bx + c = 0 \) is calculated using the formula: \[ D = b^2 - 4ac \] Based on the value of \( D \): - If \( D > 0 \): **Two distinct real solutions** - If \( D = 0 \): **One real solution (a repeated root)** - If \( D < 0 \): **No real solutions (two complex solutions)** Here's the breakdown for each equation: --- ### **7. \( x^{2} + x - 42 = 0 \)** - **Coefficients:** \( a = 1 \), \( b = 1 \), \( c = -42 \) - **Discriminant:** \[ D = 1^2 - 4(1)(-42) = 1 + 168 = 169 \] - **Number of Real Solutions:** **2** (since \( D = 169 > 0 \)) --- ### **8. \( -x^{2} + 13x - 40 = 0 \)** - **Coefficients:** \( a = -1 \), \( b = 13 \), \( c = -40 \) - **Discriminant:** \[ D = 13^2 - 4(-1)(-40) = 169 - 160 = 9 \] - **Number of Real Solutions:** **2** (since \( D = 9 > 0 \)) --- ### **9. \( x^{2} + 2x + 5 = 0 \)** - **Coefficients:** \( a = 1 \), \( b = 2 \), \( c = 5 \) - **Discriminant:** \[ D = 2^2 - 4(1)(5) = 4 - 20 = -16 \] - **Number of Real Solutions:** **No real solutions** (since \( D = -16 < 0 \)) --- ### **10. \( x^{2} = 18x - 81 \)** - **Rearranged Equation:** \( x^{2} - 18x + 81 = 0 \) - **Coefficients:** \( a = 1 \), \( b = -18 \), \( c = 81 \) - **Discriminant:** \[ D = (-18)^2 - 4(1)(81) = 324 - 324 = 0 \] - **Number of Real Solutions:** **1** (since \( D = 0 \)) --- ### **11. \( -x^{2} + 7x + 44 = 0 \)** - **Coefficients:** \( a = -1 \), \( b = 7 \), \( c = 44 \) - **Discriminant:** \[ D = 7^2 - 4(-1)(44) = 49 + 176 = 225 \] - **Number of Real Solutions:** **2** (since \( D = 225 > 0 \)) --- ### **12. \( \frac{1}{4}x^{2} - 5x + 25 = 0 \)** - **Coefficients:** \( a = \frac{1}{4} \), \( b = -5 \), \( c = 25 \) - **Discriminant:** \[ D = (-5)^2 - 4\left(\frac{1}{4}\right)(25) = 25 - 25 = 0 \] - **Number of Real Solutions:** **1** (since \( D = 0 \)) --- ### **13. \( 2x^{2} + 7 = 5x \)** - **Rearranged Equation:** \( 2x^{2} - 5x + 7 = 0 \) - **Coefficients:** \( a = 2 \), \( b = -5 \), \( c = 7 \) - **Discriminant:** \[ D = (-5)^2 - 4(2)(7) = 25 - 56 = -31 \] - **Number of Real Solutions:** **No real solutions** (since \( D = -31 < 0 \)) --- ### **14. \( 4x^{2} + 25x = 21 \)** - **Rearranged Equation:** \( 4x^{2} + 25x - 21 = 0 \) - **Coefficients:** \( a = 4 \), \( b = 25 \), \( c = -21 \) - **Discriminant:** \[ D = 25^2 - 4(4)(-21) = 625 + 336 = 961 \] - **Number of Real Solutions:** **2** (since \( D = 961 > 0 \)) --- ### **17. \( \frac{1}{2}x^{2} + 2x + 3 = 0 \)** - **Coefficients:** \( a = \frac{1}{2} \), \( b = 2 \), \( c = 3 \) - **Discriminant:** \[ D = 2^2 - 4\left(\frac{1}{2}\right)(3) = 4 - 6 = -2 \] - **Number of Real Solutions:** **No real solutions** (since \( D = -2 < 0 \)) --- ### **18. \( \frac{1}{6}x^{2} = 2x + 18 \)** - **Rearranged Equation:** \( \frac{1}{6}x^{2} - 2x - 18 = 0 \) - **Simplified Equation:** Multiply all terms by 6 to eliminate the fraction: \[ x^{2} - 12x - 108 = 0 \] - **Coefficients:** \( a = 1 \), \( b = -12 \), \( c = -108 \) - **Discriminant:** \[ D = (-12)^2 - 4(1)(-108) = 144 + 432 = 576 \] - **Number of Real Solutions:** **2** (since \( D = 576 > 0 \)) --- **Summary Table:** | Problem | Equation | Discriminant \( D \) | Number of Real Solutions | |---------|--------------------------------|----------------------|-------------------------------| | 7 | \( x^{2} + x - 42 = 0 \) | 169 | 2 | | 8 | \( -x^{2} + 13x - 40 = 0 \) | 9 | 2 | | 9 | \( x^{2} + 2x + 5 = 0 \) | -16 | No real solutions | | 10 | \( x^{2} - 18x + 81 = 0 \) | 0 | 1 | | 11 | \( -x^{2} + 7x + 44 = 0 \) | 225 | 2 | | 12 | \( \frac{1}{4}x^{2} - 5x +25 = 0 \) | 0 | 1 | | 13 | \( 2x^{2} - 5x + 7 = 0 \) | -31 | No real solutions | | 14 | \( 4x^{2} + 25x - 21 = 0 \) | 961 | 2 | | 17 | \( \frac{1}{2}x^{2} + 2x + 3 = 0 \) | -2 | No real solutions | | 18 | \( x^{2} - 12x - 108 = 0 \) | 576 | 2 | --- If you need further explanations or assistance with solving for the actual roots, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the value of the discriminant and the number of real solutions for each given equation, we'll use the discriminant formula: \(D = b^2 - 4ac\). The number of real solutions can be determined as follows: if \(D > 0\), there are two real solutions; if \(D = 0\), there's one real solution; and if \(D < 0\), there are no real solutions. 1. For \(x^2 + x - 42 = 0\): - \(D = 1^2 - 4(1)(-42) = 1 + 168 = 169\) (two real solutions). 2. For \(-x^2 + 13x - 40 = 0\): - \(D = 13^2 - 4(-1)(-40) = 169 - 160 = 9\) (two real solutions). 3. For \(x^2 + 2x + 5 = 0\): - \(D = 2^2 - 4(1)(5) = 4 - 20 = -16\) (no real solutions). 4. For \(x^2 = 18x - 81\): - Rearranging gives \(x^2 - 18x + 81 = 0\), then \(D = (-18)^2 - 4(1)(81) = 324 - 324 = 0\) (one real solution). 5. For \(-x^2 + 7x + 44 = 0\): - \(D = 7^2 - 4(-1)(44) = 49 + 176 = 225\) (two real solutions). 6. For \(\frac{1}{4} x^2 - 5x + 25 = 0\): - \(D = (-5)^2 - 4(\frac{1}{4})(25) = 25 - 25 = 0\) (one real solution). 7. For \(2x^2 + 7 = 5x\): - Rearranging gives \(2x^2 - 5x + 7 = 0\), then \(D = (-5)^2 - 4(2)(7) = 25 - 56 = -31\) (no real solutions). 8. For \(4x^2 + 25x = 21\): - Rearranging gives \(4x^2 + 25x - 21 = 0\), then \(D = 25^2 - 4(4)(-21) = 625 + 336 = 961\) (two real solutions). 9. For \(\frac{1}{2}x^2 + 2x + 3 = 0\): - \(D = 2^2 - 4(\frac{1}{2})(3) = 4 - 6 = -2\) (no real solutions). 10. For \(\frac{1}{6}x^2 = 2x + 18\): - Rearranging gives \(\frac{1}{6}x^2 - 2x - 18 = 0\), then \(D = (-2)^2 - 4(\frac{1}{6})(-18) = 4 + 12 = 16\) (two real solutions). In summary, the equations yield the following solutions: 1. Two real solutions (169) 2. Two real solutions (9) 3. No real solutions (-16) 4. One real solution (0) 5. Two real solutions (225) 6. One real solution (0) 7. No real solutions (-31) 8. Two real solutions (961) 9. No real solutions (-2) 10. Two real solutions (16)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad