Pregunta
upstudy study bank question image url

Find all values of \( \mu \) if \( \rho(A)=3 \), where (Hint change row \( R_{A A} \) ) \( A=\left[\begin{array}{rrrr}\mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1\end{array}\right] \)

Ask by Gross Garza. in India
Dec 17,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The values of \( \mu \) for which the rank of matrix \( A \) is 3 are all real numbers except \( \frac{11 + \sqrt{265}}{12} \) and \( \frac{11 - \sqrt{265}}{12} \).

Solución

To find the values of \( \mu \) such that the rank of the matrix \( A \) is 3, we will perform row operations to simplify the matrix and analyze its rank. The matrix \( A \) is given by: \[ A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] We will perform row operations to simplify this matrix. Let's start by changing row \( R_1 \) to eliminate the first element of \( R_3 \). 1. **Row Operation**: Replace \( R_3 \) with \( R_3 + \frac{6}{\mu} R_1 \) (assuming \( \mu \neq 0 \)): \[ R_3 = -6 + \frac{6}{\mu} \cdot \mu = 0 \] \[ R_3 = 11 - \frac{6}{\mu} \cdot (-1) = 11 + \frac{6}{\mu} \] \[ R_3 = -6 + \frac{6}{\mu} \cdot 0 = -6 \] \[ R_3 = 1 + \frac{6}{\mu} \cdot 0 = 1 \] Thus, the new \( R_3 \) becomes: \[ R_3 = \begin{bmatrix} 0 & 11 + \frac{6}{\mu} & -6 & 1 \end{bmatrix} \] Now, the matrix \( A \) becomes: \[ A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ 0 & 11 + \frac{6}{\mu} & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] Next, we will analyze the rank of this matrix. The rank will be 3 if we can find a non-zero row in the reduced matrix. 2. **Row Operation**: Now, we can focus on the second column. We can replace \( R_3 \) with \( R_3 - \frac{11 + \frac{6}{\mu}}{\mu} R_2 \): \[ R_3 = \begin{bmatrix} 0 & 11 + \frac{6}{\mu} - \frac{11 + \frac{6}{\mu}}{\mu} \cdot \mu & -6 + \frac{11 + \frac{6}{\mu}}{\mu} \cdot (-1) & 1 \end{bmatrix} \] This simplifies to: \[ R_3 = \begin{bmatrix} 0 & 0 & -6 + \frac{11 + \frac{6}{\mu}}{\mu} & 1 \end{bmatrix} \] Now, we need to ensure that the third row is non-zero for the rank to be 3. This means we need to solve: \[ -6 + \frac{11 + \frac{6}{\mu}}{\mu} \neq 0 \] This leads to: \[ -6 + \frac{11\mu + 6}{\mu^2} \neq 0 \] Multiplying through by \( \mu^2 \) (assuming \( \mu \neq 0 \)) gives: \[ -6\mu^2 + 11\mu + 6 \neq 0 \] Now we can find the roots of the quadratic equation: \[ -6\mu^2 + 11\mu + 6 = 0 \] Using the quadratic formula: \[ \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-11 \pm \sqrt{11^2 - 4 \cdot (-6) \cdot 6}}{2 \cdot (-6)} \] Calculating the discriminant: \[ 11^2 - 4 \cdot (-6) \cdot 6 = 121 + 144 = 265 \] Thus, the roots are: \[ \mu = \frac{-11 \pm \sqrt{265}}{-12} \] This gives us two values for \( \mu \): \[ \mu_1 = \frac{11 + \sqrt{265}}{12}, \quad \mu_2 = \frac{11 - \sqrt{265}}{12} \] The rank of \( A \) will be 3 for all \( \mu \) except these two values. Therefore, the final answer is: \[ \mu \in \mathbb{R} \setminus \left\{ \frac{11 + \sqrt{265}}{12}, \frac{11 - \sqrt{265}}{12} \right\} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the values of \( \mu \) such that the rank \( \rho(A) = 3 \), we need to perform some row operations and analyze the determinant of the relevant submatrices. First, consider the matrix \( A \): \[ A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] To facilitate further analysis, we apply row operations. Let's change row \( R_{1} \) by adding 6 times \( R_{3} \) to it: \[ R_{1} \rightarrow R_{1} + 6R_{3} \] This leads to the following changes: \[ R_{1} = \mu + 6(-6) = \mu - 36, \quad -1 + 6(11) = -1 + 66 = 65, \quad 0 + 6(-6) = -36, \quad 0 + 6(1) = 6 \] Thus, the modified matrix becomes: \[ A = \begin{bmatrix} \mu - 36 & 65 & -36 & 6 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] Next, we can focus on the submatrix formed by the first three rows: \[ B = \begin{bmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{bmatrix} \] For \( \rho(A) \) to equal 3, the determinant of this matrix should not equal zero: \[ \det(B) = \begin{vmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{vmatrix} \] Calculating this determinant, we can expand along the first row (the upper triangular form makes it easier): \[ \det(B) = (\mu - 36) \cdot \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} - 65 \cdot \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} - 36 \cdot \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} = \mu(-6) - (-1)(11) = -6\mu + 11 \) 2. \( \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} = 0 \cdot (-6) - (-1)(-6) = -6 \) 3. \( \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} = 0 \cdot 11 - \mu(-6) = 6\mu \) Thus: \[ \det(B) = (\mu - 36)(-6\mu + 11) + 65 \cdot 6 - 36 \cdot 6\mu \] Simplifying: \[ \det(B) = -6\mu^2 + 11\mu + 390 - 216\mu = -6\mu^2 - 205\mu + 390 \] Set \( \det(B) \neq 0 \) to ensure rank 3: Solving \( -6\mu^2 - 205\mu + 390 = 0 \): Use the quadratic formula \( \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = -6, b = -205, c = 390 \): \[ \Delta = (-205)^2 - 4(-6)(390) = 42025 + 9360 = 51385 \] Calculating roots: \[ \mu = \frac{205 \pm \sqrt{51385}}{-12} \] Approximately calculate \( \sqrt{51385} \approx 226.

preguntas relacionadas

Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Otro France Jan 22, 2025

Latest Other Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad