Find all values of \( \mu \) if \( \rho(A)=3 \), where (Hint change row \( R_{A A} \) ) \( A=\left[\begin{array}{rrrr}\mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1\end{array}\right] \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the values of \( \mu \) such that the rank \( \rho(A) = 3 \), we need to perform some row operations and analyze the determinant of the relevant submatrices. First, consider the matrix \( A \): \[ A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] To facilitate further analysis, we apply row operations. Let's change row \( R_{1} \) by adding 6 times \( R_{3} \) to it: \[ R_{1} \rightarrow R_{1} + 6R_{3} \] This leads to the following changes: \[ R_{1} = \mu + 6(-6) = \mu - 36, \quad -1 + 6(11) = -1 + 66 = 65, \quad 0 + 6(-6) = -36, \quad 0 + 6(1) = 6 \] Thus, the modified matrix becomes: \[ A = \begin{bmatrix} \mu - 36 & 65 & -36 & 6 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] Next, we can focus on the submatrix formed by the first three rows: \[ B = \begin{bmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{bmatrix} \] For \( \rho(A) \) to equal 3, the determinant of this matrix should not equal zero: \[ \det(B) = \begin{vmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{vmatrix} \] Calculating this determinant, we can expand along the first row (the upper triangular form makes it easier): \[ \det(B) = (\mu - 36) \cdot \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} - 65 \cdot \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} - 36 \cdot \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} = \mu(-6) - (-1)(11) = -6\mu + 11 \) 2. \( \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} = 0 \cdot (-6) - (-1)(-6) = -6 \) 3. \( \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} = 0 \cdot 11 - \mu(-6) = 6\mu \) Thus: \[ \det(B) = (\mu - 36)(-6\mu + 11) + 65 \cdot 6 - 36 \cdot 6\mu \] Simplifying: \[ \det(B) = -6\mu^2 + 11\mu + 390 - 216\mu = -6\mu^2 - 205\mu + 390 \] Set \( \det(B) \neq 0 \) to ensure rank 3: Solving \( -6\mu^2 - 205\mu + 390 = 0 \): Use the quadratic formula \( \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = -6, b = -205, c = 390 \): \[ \Delta = (-205)^2 - 4(-6)(390) = 42025 + 9360 = 51385 \] Calculating roots: \[ \mu = \frac{205 \pm \sqrt{51385}}{-12} \] Approximately calculate \( \sqrt{51385} \approx 226.