Pregunta
upstudy study bank question image url

A car's value depreciates at a rate of \( 3.4 \% \) per year. The car was worth \( \$ 30,000 \) when it was new. Which equation could be used to determine when the car will be worth \( \$ 18,500 \), where \( x \) is time in years? \[ \begin{array}{ll}\text { A. } 18500=30000(0.034)^{x} \\ \text { B. } 18500=30000(0.966)^{x} \\ \text { D. } 30000=18500(0.966)^{x} \\ 80000 & 18500(0.034)^{x}\end{array} \]

Ask by Lindsey Henry. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation to determine when the car will be worth \$18,500 is: \[ 18500 = 30000 \times (0.966)^x \] **Answer:** B

Solución

To determine when the car will be worth \$18,500, we can use the formula for exponential depreciation: \[ V = V_0 \times (1 - r)^x \] Where: - \( V \) is the future value of the car (\$18,500). - \( V_0 \) is the initial value of the car (\$30,000). - \( r \) is the annual depreciation rate (3.4% or 0.034). - \( x \) is the number of years. Plugging in the values: \[ 18,500 = 30,000 \times (1 - 0.034)^x \] Simplifying: \[ 18,500 = 30,000 \times (0.966)^x \] This corresponds to **Option B**. **Answer:** B \[ 18500=30000(0.966)^{x} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine when the car will be worth $18,500 with a depreciation rate of 3.4% per year, you would use the equation that reflects the remaining value of the car over time. The correct equation would be \( 18500 = 30000(0.966)^{x} \), where \( 0.966 \) represents the car retaining \( 100\% - 3.4\% = 96.6\% \) of its value each year. Now, let's have some fun with this! Did you know that a car loses about 20% of its value as soon as it's driven off the lot? It’s like a teenager buying jeans—instant depreciation! That’s why savvy buyers often consider used cars—not just to save money but also to avoid the steepest part of that depreciation curve! As for problem-solving tips, remember to convert the percentage correctly and keep track of your calculations step-by-step. A common mistake is using the wrong base for the exponential decay; instead of \( 0.034 \) for depreciation, you want \( 1 - 0.034 = 0.966 \)! So, always double-check those values before plugging them in!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad